Log in

Studying the Quality of Micromixing in a Single-Stage Microreactor with Intensively Swirled Flows

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The work considers the results of experimental and numerical study on the hydrodynamic characteristics of a jet vortex reactor, MicroReactor with Intensively Swirled Flows MRISF-1, for which one of the application fields is the synthesis of oxide materials (e.g., perovskite-like material for solar panels). The energy-dissipation rate and micromixing quality are studied (by the iodide–iodate method) for various methods of supplying MRISF-1 and T-shaped millireactors with solutions. Numerical modeling reveals the volumes with the highest energy-dissipation rate. The quality of micromixing in the MRISF-1 is shown to be much higher than in the T-shaped millireactor, due to, among other things, the fact that the zone with the highest energy-dissipation rate is localized near the neck of the MRISF-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.

REFERENCES

  1. Statistical Review of World Energy, London: BP. Whitehouse Associates, 2021, vol. 70.

  2. Abiev, R.Sh. and Sirotkin, A.A., Effect of hydrodynamic conditions on micromixing in im**ing-jets microreactors, Theor. Found. Chem. Eng., 2022, vol. 56, no. 1, pp. 9–22. https://doi.org/10.1134/S0040579522010018

    Article  CAS  Google Scholar 

  3. Sirotkin, A.A. and Abiev, R.Sh., Effect of energy dissipation rate on the micromixing in a microreactor with free im**ing jets, New Mater., Compd. Appl., 2022, vol. 6, no. 3, pp. 191–201.

    CAS  Google Scholar 

  4. Kudryashova, Yu.S., Zdravkov, A.V., and Abiev, R.Sh., Synthesis of yttrium–aluminum garnet using a microreactor with im**ing jets, Glass Phys. Chem., 2021, vol. 47, no. 3, pp. 260–264. https://doi.org/10.1134/S108765962103007X

    Article  CAS  Google Scholar 

  5. Maslennikova, T.P., Gatina, E.N., Kotova, M.E., Ugolkov, V.L., Abiev, R.Sh., and Gusarov, V.V., Formation of magnesium hydrosilicate nanoscrolls with the chrysotile structure from nanocrystalline magnesium hydroxide and their thermally stimulated transformation, Inorg. Mater., 2022, vol. 58, no. 11, pp. 1152–1161. https://doi.org/10.1134/S0020168522110115

    Article  CAS  Google Scholar 

  6. Proskurina, O.V., Sokolova, A.N., Sirotkin, A.A., Abiev, R.Sh., and Gusarov, V.V., Role of hydroxide precipitation conditions in the formation of nanocrystalline BiFeO3, Russ. J. Inorg. Chem., 2021, vol. 66, no. 2, pp. 163–169. https://doi.org/10.1134/S0036023621020157

    Article  CAS  Google Scholar 

  7. Abiev, R.Sh., Almjasheva, O.V., Popkov, V.I., and Proskurina, O.V., Microreactor synthesis of nanosized particles: The role of micromixing, aggregation, and separation processes in heterogeneous nucleation, Chem. Eng. Res. Des., 2022, vol. 178, pp. 73–94. https://doi.org/10.1016/j.cherd.2021.12.003

    Article  CAS  Google Scholar 

  8. RF Patent 2736287, 2020.

  9. Abiev, R.Sh., Kudryashova, Y.S., Zdravkov, A.V., and Fedorenko, N.Y., Micromixing and co-precipitation in continuous microreactors with swirled flows and microreactors with im**ing swirled flows, Inorganics, 2023, vol. 11, no. 2, article no. 49, pp. 1–20. https://doi.org/10.3390/inorganics11020049

  10. Research Agenda for Process Intensification. Towards a Sustainable World of 2050, Górak, A. and Stankiewicz, A., Eds., Amersfoort: 2011.

    Google Scholar 

  11. Stankiewicz, A. and Moulijn, J.A., Process intensification: Transforming chemical engineering, Chem. Eng. Prog., 2000, vol. 96, no. 1, pp. 22–23.

    CAS  Google Scholar 

  12. Moulijn, J.A., Makkee, M., van Diepen, A.E., Chemical Process Technology, Chichester: Wiley, 2001.

    Google Scholar 

  13. Dautzenberg, F.M. and Mukherjee, M., Process intensification using multifunctional reactors, Chem. Eng. Sci., 2001, vol. 56, no. 2, pp. 251–267. https://doi.org/10.1016/S0009-2509(00)00228-1

    Article  CAS  Google Scholar 

  14. Zhao, C.-X., He, L., Qiao, S., and Middelberg, A., Nanoparticle synthesis in microreactors, Chem. Eng. Sci., 2011, vol. 66, no. 7, pp. 1463–1479. https://doi.org/10.1016/j.ces.2010.08.039

    Article  CAS  Google Scholar 

  15. Nightingale, A.M. and Demello, J.C., Segmented flow reactors for nanocrystal synthesis, Adv. Mater., 2013, vol. 25, no. 13, pp. 1813–1821. https://doi.org/10.1002/adma.201203252

    Article  PubMed  CAS  Google Scholar 

  16. Mbwahnche, R.C., Matyushkin, L.B., Ryzhov, O.A., Aleksandrova, O.A., and Moshnikov, V.A., Synthesis of quantum dot nanocrystals and plasmonic nanoparticles using a segmented flow reactor, Opt. Spectrosc., 2017, vol. 122, no. 1, pp. 48–51. https://doi.org/10.1134/S0030400X17010180

    Article  ADS  CAS  Google Scholar 

  17. Luo, L., Yang, M., and Chen, G., Continuous synthesis of TiO2-supported noble metal nanoparticles and their application in ammonia borane hydrolysis, Chem. Eng. Sci., 2022, vol. 251, article no. 117479. https://doi.org/10.1016/j.ces.2022.117479

    Article  CAS  Google Scholar 

  18. Kawase, M., Suzuki, T., and Miura, K., Growth mechanism of lanthanum phosphate particles by continuous precipitation, Chem. Eng. Sci., 2007, vol. 62, nos. 18–20, pp. 4875–4879. https://doi.org/10.1016/j.ces.2007.02.032

  19. Marchisio, D.L., Barresi, A.A., and Garbero, M., Nucleation, growth, and agglomeration in barium sulfate turbulent precipitation, AIChE J., 2002, vol. 48, no. 9, pp. 2039–2050. https://doi.org/10.1002/aic.690480917

    Article  ADS  CAS  Google Scholar 

  20. Marchisio, D.L., Rivautella, L., and Barresi, A.A., Design and scale-up of chemical reactors for nanoparticle precipitation, AIChE J., 2006, vol. 52, no. 5, pp. 1877–1887. https://doi.org/10.1002/aic.10786

    Article  ADS  CAS  Google Scholar 

  21. Schwarzer, H.-C. and Peukert, W., Combined experimental/numerical study on the precipitation of nanoparticles, AIChE J., 2004, vol. 50, no. 12, pp. 3234–3247. https://doi.org/10.1002/aic.10277

    Article  ADS  CAS  Google Scholar 

  22. Vacassy, R., Lemaître, J., Hofmann, H., and Gerlings, J.H., Calcium carbonate precipitation using new segmented flow tubular reactor, AIChE J., 2000, vol. 46, no. 6, pp. 1241–1252. https://doi.org/10.1002/aic.690460616

    Article  ADS  CAS  Google Scholar 

  23. Patil, S., Kate, P.R., Deshpande, J.B., and Kulkarni, A.A., Quantitative understanding of nucleation and growth kinetics of silver nanowires, Chem. Eng. J., 2021, vol. 414, article no. 128711. https://doi.org/10.1016/j.cej.2021.128711

    Article  CAS  Google Scholar 

  24. Tanimu, A., Jaenicke, S., and Alhooshani, K., Heterogeneous catalysis in continuous flow microreactors: A review of methods and applications, Chem. Eng. J., 2017, vol. 327, pp. 792–821. https://doi.org/10.1016/j.cej.2017.06.161

    Article  CAS  Google Scholar 

  25. Abiev, R.Sh., Chemical and biochemical reactors for controlled synthesis of organic and inorganic compounds, Russ. J. Appl. Chem., 2022, vol. 95, no. 11, pp. 1653–1676. https://doi.org/10.1134/S1070427222110015

    Article  CAS  Google Scholar 

  26. RF Patent 2262008, 2005.

  27. Abiev, R.Sh., Nekrasov, V.A. and Panova, D.D., Using a vortex jet apparatus as a foam generator in the production of foam concrete, Izv. SPbGTI(TU), 2012, vol. 14, no. 40, pp. 67–72.

    Google Scholar 

  28. Abiev, R.Sh., Vasil’ev, M.P., and Doil’nitsyn, V.F., Research of vacuum degassing of water by vortex jet apparatus, Izv. SPbGTI(TU), 2015, vol. 28, no. 54, pp. 64–69.

    Google Scholar 

  29. Fedorenko, N.Yu., Abiev, R.Sh., Kudryashova, Yu.S., Ugolkov, V.L., Khamova, T.V., Mjakin, S.V., Zdravkov, A.V., Kalinina, M.V., and Shilova, O.A., Comparative study of zirconia based powders prepared by co-precipitation and in a microreactor with im**ing swirled flows, Ceram. Int., 2022, vol. 48, no. 9, pp. 13006–13013. https://doi.org/10.1016/j.ceramint.2022.01.174

    Article  CAS  Google Scholar 

  30. Abiev, R.Sh., Zdravkov, A.V., Kudryashova, Yu.S., Aleksandrov, A.A., Kuznetsov, S.V., and Fedorov, P.P., Synthesis of calcium fluoride nanoparticles in a microreactor with intensely swirling flows, Russ. J. Inorg. Chem., 2021, vol. 66, no. 7, pp. 1047–1052. https://doi.org/10.1134/S0036023621070020

    Article  CAS  Google Scholar 

  31. Lomakin, M.S., Proskurina, O.V., Abiev, R.Sh., Leonov, A.A., Nevedomskiy, V.N., Voznesenskiy, S.S., and Gusarov, V.V., Pyrochlore phase in the Bi2O3–Fe2O3–WO3–(H2O) system: Physicochemical and hydrodynamic aspects of its production using a microreactor with intensively swirled flows, Adv. Powder Technol., 2023, vol. 34, no. 7, article no. 104053. https://doi.org/10.1016/j.apt.2023.104053

    Article  CAS  Google Scholar 

  32. Fournier, M.C., Falk, L., and Villermaux, J., A new parallel competing reaction system for assessing micromixing efficiency—Experimental approach, Chem. Eng. Sci., 1996, vol. 51, no. 22, pp. 5053–5064. V. 22. P. 5053–5064. https://doi.org/10.1016/0009-2509(96)00270-9

  33. Guichardon, P. and Falk, L., Characterisation of micromixing efficiency by the iodide–iodate reaction system. Part I: Experimental procedure, Chem. Eng. Sci., 2000, vol. 55, no. 19, pp. 4233–4243. https://doi.org/10.1016/S0009-2509(00)00068-3

    Article  CAS  Google Scholar 

  34. Commenge J.-M. and Falk, L., Villermaux–Dushman protocol for experimental characterization of micromixers, Chem. Eng. Process., 2011, vol. 50, no. 10, pp. 979–990. https://doi.org/10.1016/j.cep.2011.06.006

    Article  CAS  Google Scholar 

  35. Falk, L. and Commenge, J.-M., Performance comparison of micromixers, Chem. Eng. Sci., 2010, vol. 65, no. 1, pp. 405–411. https://doi.org/10.1016/j.ces.2009.05.045

    Article  CAS  Google Scholar 

  36. Abiev, R. Sh. and Makusheva, I.V., Effect of macro- and micromixing on processes involved in solution synthesis of oxide particles in high-swirl microreactors, Theor. Found. Chem. Eng., 2022, vol. 56, no. 2, pp. 141–151. https://doi.org/10.1134/S0040579522020014

    Article  CAS  Google Scholar 

  37. Abiev, R.Sh. and Makusheva, I.V., Energy dissipation rate and micromixing in a two-step micro-reactor with intensively swirled flows, Micromachines, 2022, vol. 13, no. 11, article no. 1859, pp. 1–31. https://doi.org/10.3390/mi13111859

Download references

Funding

This study was supported by the Russian Scientific Foundation, project no. 20-63-47016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sh. Abiev.

Ethics declarations

The authors of this work declare that they have no conflict of interests.

Additional information

Translated by E. Glushachenkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abiev, R.S., Potekhin, D.A. Studying the Quality of Micromixing in a Single-Stage Microreactor with Intensively Swirled Flows. Theor Found Chem Eng 57, 1313–1327 (2023). https://doi.org/10.1134/S0040579523060015

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579523060015

Keywords:

Navigation