Log in

Kinetics of Ultrasound-Assisted Dissolution of a LiCoO2 Powder in the Deep Eutectic Solvent Choline Chloride–Sulfosalicylic Acid

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Ultrasound is used to enhance the dissolution of lithium cobalt(III) oxide in the deep eutectic solvent choline chloride–sulfosalicylic acid by the mechanism of liquid stirring by acoustic flows and accelerated penetration of the liquid into the pores and cracks of a metal oxide. Formulas are derived to describe the kinetics of the process and establish the relationship between its main parameters and characteristics. The conditions for the most efficient use of ultrasound are identified. Experimental data are obtained on the dissolution kinetics of LiCoO2 powder in the deep eutectic solvent choline chloride–sulfosalicylic acid. The experimental data and the results of theoretical calculations are in good agreement, which confirms the adequacy of the developed ideas about the actual physicochemical essence of the studied processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Slater, N.B., Theory of Unimolecular Reactions, Ithaca, N.Y., Cornell University Press, 1959.

    Google Scholar 

  2. Wellens, S., Vander Hoogerstraete, T., Möller, C., Thijs, B., Luyten, J., and Binnemans, K., Dissolution of metal oxides in an acid-saturated ionic liquid solution and investigation of the back-extraction behaviour to the aqueous phase, Hydrometallurgy, 2014, vols. 144–145, p. 27.

    Article  Google Scholar 

  3. Richter, J. and Ruck, M., Dissolution of metal oxides in task-specific ionic liquid, RSC Adv., 2019, vol. 9, no. 51, p. 29699.

    Article  CAS  Google Scholar 

  4. Gradov, O.M., Voshkin, A.A., and Zakhodyaeva, Yu.A., Analysis of the possible applications of the acoustic flow effect for the breakup and transfer of liquid substances in a cylindrical volume, Theor. Found. Chem. Eng., 2017, vol. 51, no. 5, p. 876.

    Article  CAS  Google Scholar 

  5. Flynn, H.G., Physics of acoustic cavitation in liquids, Phys. Acoust., 1964, vol. 1, part B, p. 595.

  6. Gradov, O.M., Voshkin, A.A., and Zakhodyaeva, Yu.A., Estimating the parameters of ultrasonically induced mass transfer and flow of liquids in the pseudomembrane method, Chem. Eng. Process.: Process Intensif., 2017, vol. 118, p. 54.

    Article  CAS  Google Scholar 

  7. Nyborg, W.L., 11. Acoustic streaming, Phys. Acoust., 1965, vol. 2, part B, p. 265.

  8. Medwin, H. and Rudnik, I., Surface and volume sources of vorticity in acoustic fields, JASA, 1953, vol. 25, no. 3, p. 538.

    Article  Google Scholar 

  9. Gradov, O.M., Voshkin, A.A., and Zakhodyaeva, Yu.A., Breakup of immiscible liquids at the interface using high-power acoustic pulses, Chem. Eng. Process.: Process Intensif., 2018, vol. 131, p. 125.

    Article  CAS  Google Scholar 

  10. Westervelt, P.J., The theory of steady rotational flow generated by sound field, JASA, 1953, vol. 25, no. 1, p. 60.

    Article  Google Scholar 

  11. Gradov, O.M., Zakhodyaeva, Yu.A., Zinov’eva, I.V., and Voshkin, A.A., Some features of the ultrasonic liquid extraction of metal ions, Molecules, 2019, vol. 24, Article 3549.

    Article  CAS  Google Scholar 

  12. Prandtl, L., The mechanics of viscous fluids, in Aerodynamic Theory III, London, 1935, p. 34.

  13. Zarembo, L.K., Acoustic flows, in Physics and Technology of Powerful Ultrasound: Powerful Ultrasonic Fields, Rozenberg, L.D., Ed., Moscow: Nauka, 1968, vol. 2, p. 87.

    Google Scholar 

  14. Schlichting, H., Grenzschicht-Theorie, Karlsruhe, Braun, 1951.

    Google Scholar 

  15. Rayleigh, J.W.S., The Theory of Sound, 1954, vol. 2, p. 352.

    Google Scholar 

  16. Eckart, C., Vortices and streams caused by sound waves, Phys. Rev., 1948, vol. 73, no. 1, p. 68.

    Article  Google Scholar 

  17. Dauphinee, T.M., Acoustic air pump, Rev. Sci. Instrum., 1957, vol. 28, no. 6, p. 452.

    Article  CAS  Google Scholar 

  18. Or, T., Gourley, S.W.D., Kaliyappan, K., Yu, A., and Chen, Z., Recycling of mixed cathode lithium-ion batteries for electric vehicles: Current status and future outlook, Carbon Energy, 2020, vol. 2, p. 6.

    Article  CAS  Google Scholar 

  19. Aksel'rud, G.A. and Molchanov, A.D., Dissolution of Solids, Moscow: Khimiya, 1977.

    Google Scholar 

  20. Voshkin, A.A. and Gradov, O.M., Parametric splitting and transfer of liquid cuts for the intensification of mass exchange in a cylindrical volume, Theor. Found. Chem. Eng., 2017, vol. 51, no. 3, p. 274.

    Article  CAS  Google Scholar 

  21. Birkhoff, G., Hydrodynamics, Princeton, N.J.: Princeton University Press, 1960.

    Google Scholar 

  22. Landau, L.D. and Lifshits, E.M., Hydrodynamics, Moscow: Nauka, 1986.

    Google Scholar 

  23. Gradov, O.M., Zakhodyaeva, Y.A., Zinov’eva, I.V., and Voshkin, A.A., Ultrasonic intensification of mass transfer in organic acid extraction, Processes, 2021, vol. 9, Article 15.

    Article  CAS  Google Scholar 

  24. Rudenko, O.V. and Soluyan, S.I., Theoretical Foundations of Nonlinear Acoustics, Moscow: Nauka, 1975.

    Google Scholar 

  25. Gradov, O.M., Zinov’eva, I.V., Zakhodyaeva, Y.A., and Voshkin, A.A., Modelling of the erosive dissolution of metal oxides in a deep eutectic solvent-choline chloride/sulfosalicylic acid-assisted by ultrasonic cavitation, Metals, 2021, vol. 11, Article 1964.

    Article  CAS  Google Scholar 

  26. Akulichev, V.A., Pulsations of cavitation cavities, in Physics and Technology of Powerful Ultrasound: Powerful Ultrasonic Fields, Rozenberg, L.D., Ed., Moscow: Nauka, 1968, vol. 2, p. 129.

    Google Scholar 

  27. Willard, G.W., Ultrasonically induced cavitation in water: A step-by-step process, JASA, 1953, vol. 25, no. 4, p. 669.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 20-13-00387).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Gradov.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gradov, O.M., Zinov’eva, I.V., Zakhodyaeva, Y.A. et al. Kinetics of Ultrasound-Assisted Dissolution of a LiCoO2 Powder in the Deep Eutectic Solvent Choline Chloride–Sulfosalicylic Acid. Theor Found Chem Eng 56, 997–1002 (2022). https://doi.org/10.1134/S0040579522060069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579522060069

Keywords:

Navigation