Log in

A Deep Eutectic Solvent Based on Choline Chloride and Sulfosalicylic Acid: Properties and Applications

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The results of studying the physical properties of a deep eutectic solvent based on choline chloride and sulfosalicylic acid have been presented. A phase diagram for this two-component mixture has been constructed, and the dependences of its density and refractive index on temperature have been studied for the first time. The molar refractivity of the deep eutectic solvent under study has been calculated. The possibility of using this solvent as an extractant for the recovery of metal ions in a solid–liquid system has been evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Abbott, A.P., Capper, G., Davies, D.L., Rasheed, R.K., and Tambyrajah, V., Novel solvent properties of choline chloride/urea mixtures, Chem. Commun., 2003, no. 1, pp. 70–71. https://doi.org/10.1039/B210714G

  2. Zhang, H., Wang, Y., Zhou, Y., Xu, K., Li, N., Wen, Q., and Yang, Q., Aqueous biphasic systems containing PEG-based deep eutectic solvents for high-performance partitioning of RNA, Talanta, 2017, vol. 170, p. 266.

    Article  CAS  Google Scholar 

  3. Abbott, A.P., Barron, J.C., Ryder, K.S., and Wilson, D., Eutectic-based ionic liquids with metal-containing anions and cations, Chem. – Eur. J., 2007, vol. 13, no. 22, p. 6495.

    Article  CAS  Google Scholar 

  4. Zhang, Q., De Oliveira Vigier, K., Royer, S., and Jérôme, F., Deep eutectic solvents: Syntheses, properties and applications, Chem. Soc. Rev., 2012, vol. 41, no. 21, pp. 7108–7146. https://doi.org/10.1039/C2CS35178A

    Article  CAS  PubMed  Google Scholar 

  5. Abranches, D.O., Martins, M.A., Silva, L.P., Schaeffer, N., Pinho, S.P., and Coutinho, J.A., Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: The quest for type V DES, Chem. Commun., 2019, vol. 55, p. 10253.

    Article  CAS  Google Scholar 

  6. New Generation Green Solvents for Separation and Preconcentration of Organic and Inorganic Species, Soylak, M. and Yilmaz, E., Eds., Amsterdam: Elsevier, 2020.

    Google Scholar 

  7. Wang, M., Tan, Q., Liu, L., and Li, J., A low-toxicity and high-efficiency deep eutectic solvent for the separation of aluminum foil and cathode materials from spent lithium-ion batteries, J. Hazard. Mater., 2019, vol. 380, article no. 120846.

    Article  CAS  Google Scholar 

  8. Ijardar, S.P., Deep eutectic solvents composed of tetrabutylammonium bromide and PEG: Density, speed of sound and viscosity as a function of temperature, J. Chem. Thermodyn., 2020, vol. 140, article no. 105897.

    Article  CAS  Google Scholar 

  9. Hansen, B.B., Spittle, S., Chen, B., Poe, D., Zhang, Y., Klein, J.M., Horton, A., Adhikari, L., Zelovich, T., Doherty, B.W., Gurkan, B., Maginn, E.J., Ragauskas, A., Dadmun, M., Zawodzinski, T.A., Baker, G.A., Tuckerman, M.E., Savinell, R.F., and Sangoro, J.R., Deep eutectic solvents: A review of fundamentals and applications, Chem. Rev., 2020 (in press).

  10. Basaiahgari, A., Panda, S., and Gardas, R.L., Effect of ethylene, diethylene, and triethylene glycols and glycerol on the physicochemical properties and phase behavior of benzyltrimethyl and benzyltributylammonium chloride based deep eutectic solvents at 283.15−343.15 K, J. Chem. Eng. Data, 2018, vol. 63, p. 2613.

    Article  CAS  Google Scholar 

  11. Shishov, A., Pochivalov, A., Nugbienyo, L., Andruch, V., and Bulatov, A., Deep eutectic solvents are not only effective extractants, TrAC Trends Anal. Chem., 2020, vol. 129, p. 115956.

    Article  CAS  Google Scholar 

  12. Qin, H., Hu, X., Wang, J., Cheng, H., Chen, L., and Qi, Z., Overview of acidic deep eutectic solvents on synthesis, properties and applications, Green Energy Environ., 2020, vol. 5, p. 8.

    Article  Google Scholar 

  13. Li, J., **ao, H., Tang, X., and Zhou, M., Green carboxylic acid-based deep eutectic solvents as solvents for extractive desulfurization, Energy Fuels, 2016, vol. 30, no. 7, p. 5411.

    Article  CAS  Google Scholar 

  14. Zhao, H. and Baker, G.A., Ionic liquids and deep eutectic solvents for biodiesel synthesis: A review, J. Chem. Technol. Biotechnol., 2012, vol. 88, no. 1, p. 3.

    Article  Google Scholar 

  15. Voshkin, A.A., Belova, V.V., and Zakhodyaeva, Yu.A., Iron extraction with di(2-ethylhexyl)dithiophosphoric acid and a binary extractant based on it, Russ. J. Inorg. Chem., 2018, vol. 63, no. 3, pp. 387–390. https://doi.org/10.1134/S0036023618030233

    Article  CAS  Google Scholar 

  16. Zakhodyaeva, Yu.A., Voshkin, A.A., Belova, V.V., and Khol’kin, A.I., Extraction of monocarboxylic acids by trioctylmethylammonium di(2-ethylhexyl)phosphate, Theor. Found. Chem. Eng., 2012, vol. 46, no. 4, pp. 413–418. https://doi.org/10.1134/S0040579512040094

    Article  CAS  Google Scholar 

  17. Belova, V.V., Egorova, N.S., Voshkin, A.A., and Khol’kin, A.I., Extraction of rare earth metals, uranium, and thorium from nitrate solutions by binary extractants, Theor. Found. Chem. Eng., 2015, vol. 49, no. 4, pp. 545–549. https://doi.org/10.1134/S0040579515040041

    Article  CAS  Google Scholar 

  18. Belova, V.V., Voshkin, A.A., Egorova, N.S., and Kholkin, A.I., Solvent extraction of rare earth metals from nitrate solutions with di(2,4,4-trimethylpentyl)phosphinate of methyltrioctylammonium, J. Mol. Liq., 2012, vol. 172, pp. 144–146.

    Article  CAS  Google Scholar 

  19. Belova, V.V., Voshkin, A.A., Kholkin, A.I., and Payrtman, A.K., Solvent extraction of some lanthanides from chloride and nitrate solutions by binary extractants, Hydrometallurgy, 2009, vol. 97, nos. 3–4, pp. 198–203. https://doi.org/10.1016/j.hydromet.2009.03.004

    Article  CAS  Google Scholar 

  20. Zakhodyaeva, Yu.A., Izyumova, K.V., Solov’eva, M.S., and Voshkin, A.A., Extraction separation of the components of leach liquors of batteries, Theor. Found. Chem. Eng., 2017, vol. 51, no. 5, pp. 883–887. https://doi.org/10.1134/S0040579517050244

    Article  CAS  Google Scholar 

  21. Zakhodyaeva, Y.A., Zinov’eva, I.V., Tokar, E.S., and Voshkin, A.A., Complex extraction of metals in an aqueous two-phase system based on poly(ethylene oxide) 1500 and sodium nitrate, Molecules, 2019, vol. 24, no. 22, p. 4078. https://doi.org/10.3390/molecules24224078

    Article  CAS  PubMed Central  Google Scholar 

  22. Fedorova, M.I., Zakhodyaeva, Yu.A., Zinov’eva, I.V., and Voshkin, A.A., Recovery of rare-earth elements from nitrate solutions using polyethylene glycol 1500, Russ. Chem. Bull., 2020, vol. 69, no. 7, pp. 1344–1348. https://doi.org/10.1007/s11172-020-2908-2

    Article  CAS  Google Scholar 

  23. Zinov’eva, I.V., Zakhodyaeva, Yu.A., and Voshkin, A.A., Data on the extraction of benzoic, salicylic and sulfosalicylic acids from dilute solutions using PEG-based aqueous two-phase systems, Data Brief, 2020, vol. 28, article no. 105033. https://doi.org/10.1016/j.dib.2019.105033

    Article  PubMed  Google Scholar 

  24. Zinov’eva, I.V., Zakhodyaeva, Yu.A., and Voshkin, A.A., Interphase distribution of caffeine and coumarin in extraction systems with polyethylene glycol and sodium sulfate, Theor. Found. Chem. Eng., 2019, vol. 53, no. 6, pp. 996–1000. https://doi.org/10.1134/S0040579519060174

    Article  Google Scholar 

  25. Voshkin, A.A., Zakhodyaeva, Yu.A., and Zinov’eva, I.V., “Green” extractants in the recovery processes of non-ferrous metal ions from technological solutions, Proc. IV Congress “Fundamental Research and Applied Develo** of Recycling and Utilization Processes of Technogenic Formations”, Social Sciences, 2020, p. 1.

  26. Gilmore, M., McCourt, E., Connolly, F., Nockemann, P., Swadzba-Kwasny, M., and Holbrey, J.D., Hydrophobic deep eutectic solvents incorporating trioctylphosphine oxide: Advanced liquid extractants, ACS Sustainable Chem. Eng., 2018, vol. 6, no. 12, p. 17323.

    Article  CAS  Google Scholar 

  27. Shuainan, N., Jia, S., Hepeng, Zh., Zhiyuan, Z., Hailan, Zh., and **aoqi, S., A cleaner strategy for comprehensive recovery of waste SmCo magnets based on deep eutectic solvents, Chem. Eng. J., 2021, article no. 128602 (in press).

  28. Rodriguez, N.R., Machiels, L., Onghena, B., Spooren, J., and Binnemans, K., Selective recovery of zinc from goethite residue in the zinc industry using deep-eutectic solvents, RSC Adv., 2020, vol. 10, no. 12, pp. 7328–7335. https://doi.org/10.1039/D0RA00277A

    Article  Google Scholar 

  29. Zürner, P. and Frisch, G., Leaching and selective extraction of indium and tin from zinc flue dust using an oxalic acid based deep eutectic solvent, ACS Sustainable Chem. Eng., 2019, vol. 7, no. 5, p. 5300.

    Article  Google Scholar 

  30. Landa-Castro, M., Aldana-González, J., Montes de Oca-Yemha, M.G., Romero-Romo, M., Arce-Estrada, E.M., and Palomar-Pardavé, M., Ni–Co alloy electrodeposition from the cathode powder of Ni-MH spent batteries leached with a deep eutectic solvent (reline), J. Alloys Compd., 2020, vol. 830, article no. 154650.

    Article  CAS  Google Scholar 

  31. Peeters, N., Binnemans, K., and Riaño, S., Solvometallurgical recovery of cobalt from lithium-ion battery cathode materials using deep-eutectic solvents, Green Chem., 2020, vol. 22, p. 4210.

    Article  CAS  Google Scholar 

  32. Chen, W., Jiang, J., Lan, X., Zhao, X., Mou, H., and Mu, T., A strategy for dissolution and separation of rare earth oxides by novel Brønsted acidic deep eutectic solvents, Green Chem., 2019, vol. 21, p. 4748.

    Article  CAS  Google Scholar 

  33. Rodriguez, N.R., Machiels, L., and Binnemans, K., p‑Toluenesulfonic acid-based deep-eutectic solvents for solubilizing metal oxides, ACS Sustainable Chem. Eng., 2019, vol. 7, no. 4, p. 3940.

    Article  Google Scholar 

  34. Damilano, G., Laitinen, A., Willberg-Keyrilainen, P., Lavonen, T., Hakkinen, R., Dehaen, W., Binnemans, K., and Kuutti, L., Effects of thiol substitution in deep-eutectic solvents (DESs) as solvents for metal oxides, RSC Adv., 2020, vol. 10, no. 39, p. 23484.

    Article  CAS  Google Scholar 

  35. Taysun, M.B., Sert, E., and Atalay, F.S., Physical properties of benzyl tri-methyl ammonium chloride based deep eutectic solvents and employment as catalyst, J. Mol. Liq., 2016, vol. 223, pp. 845–852. https://doi.org/10.1016/j.molliq.2016.07.148

    Article  CAS  Google Scholar 

  36. Shafie, M.H., Yusof, R., and Gan, C.-Y., Synthesis of citric acid monohydrate-choline chloride based deep eutectic solvents (DES) and characterization of their physicochemical properties, J. Mol. Liq., 2019, vol. 288, article no. 111081.

    Article  CAS  Google Scholar 

  37. Florindo, C., Oliveira, F.S., Rebelo, L.P.N., Fernandes, A.M., and Marrucho, I.M., Insights into the synthesis and properties of deep eutectic solvents based on cholinium chloride and carboxylic acids, ACS Sustainable Chem. Eng., 2014, vol. 2, no. 10, p. 2416.

    Article  CAS  Google Scholar 

  38. Omar, K.A. and Sadeghi, R., Novel benzilic acid-based deep-eutectic-solvents: Preparation and physicochemical properties determination, Fluid Phase Equilib., 2020, vol. 522, article no. 112752.

    Article  CAS  Google Scholar 

  39. Sánchez, P.B., González, B., Salgado, J., José Parajó, J., and Domínguez, Á., Physical properties of seven deep eutectic solvents based on L-proline or betaine, J. Chem. Thermodyn., 2019, vol. 131, p. 517.

    Article  Google Scholar 

  40. Basaiahgari, A., Panda, S., and Gardas, R.L., Acoustic, volumetric, transport, optical and rheological properties of benzyltripropylammonium based deep eutectic solvents, Fluid Phase Equilib., 2017, vol. 448, p. 41.

    Article  CAS  Google Scholar 

  41. Liu, C., Lin, J., Cao, H., Zhang, Y., and Sun, Z., Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review, J. Cleaner Prod., 2019, vol. 228, p. 801.

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation, project no. 20-13-00387.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Zakhodyaeva.

Additional information

Translated by A. Uteshinsky

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zinov’eva, I.V., Fedorov, A.Y., Milevskii, N.A. et al. A Deep Eutectic Solvent Based on Choline Chloride and Sulfosalicylic Acid: Properties and Applications. Theor Found Chem Eng 55, 371–379 (2021). https://doi.org/10.1134/S0040579521030246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579521030246

Keywords:

Navigation