Log in

Optimization of the Production Process of Biologically-Active Betulin Diacetate from Raw and Activated Birch Bark

  • Selected Articles from the Journal Khimicheskaya Tekhnologiya
  • Technology of Organic Compounds
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The effect of the conditions of the acetylation process of raw and activated birch bark on the yield and composition of the products is investigated. The structure of biologically active betulin diacetate (BDA) is confirmed with physicochemical methods. The optimal regimes of the one-step original method for the production of BDA from raw and activated birch bark are established using the experimental and computational techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lu, F., WO Patent 2013117137 A1, 2013.

  2. Lee, S., Jung, K., Lee, D., Lee, S.R., Lee, K.R., Kang, K.S., and Kim, K.H., Protective effect and mechanism of action of lupane triterpenes from Cornus walteri in cisplatin-induced nephrotoxicity, Bioorg. Med. Chem. Lett., 2015, vol. 25, no. 23, pp. 5613–5618. https://doi.org/10.1016/j.bmcl.2015.10.035.

    Article  CAS  PubMed  Google Scholar 

  3. Shakhtshneider, T.P., Kuznetsova, S.A., Mikhailenko, M.A., Zamai, A.S., Malyar, Yu.N., Zamai, T.N., and Boldyrev, V.V., Effect of mechanochemical treatment on physicochemical and antitumor properties of betulin diacetate mixtures with arabinogalactan, Chem. Nat. Compd., 2013, vol. 49, pp. 470–474.

    Article  CAS  Google Scholar 

  4. Alakurtti, S., Heiska, T., Kiriazis, A., Sacerdoti-Sierra, N., Jaffe, C.L., and Yli-Kauhaluoma, J., Synthesis and anti-leishmanial activity of heterocyclic betulin derivatives, Bioorg. Med. Chem., 2010, vol. 18, no. 4, pp. 1573–1582.

    Article  CAS  PubMed  Google Scholar 

  5. Salin, O., Alakurtti, S., Pohjala, L., Siiskonen, A., Maass, V., Maass, M., Yli-Kauhaluoma, J., and Vuorela, P., Inhibitory effect of the natural product betulin and its derivatives against the intracellular bacterium chlamydia pneumoniae, Biochem. Pharmacol., 2010, vol. 80, no. 8, pp. 1141–1151.

    Article  CAS  PubMed  Google Scholar 

  6. Li, J., Goto, M., Yang, X., Morris-Natschke, S.L., Huang, L., Chen, C.-H., and Lee, K.-H., Fluorinated betulinic acid derivatives and evaluation of their anti-HIV activity, Bioorg. Med. Chem. Lett., 2016, vol. 26, no. 1, pp. 68–71.

    Article  CAS  PubMed  Google Scholar 

  7. Bodrikov, I.V., Borisova, N.V., Chiyanov, A.A., Kurskii, Y.A., and Fukin, G.K., Vinylic substitution in the reaction of betulin diacetate with tert-butyl hypochlorite, Russ. J. Org. Chem., 2013, vol. 49, pp. 78–82.

    Article  CAS  Google Scholar 

  8. Lugemwa, F.N., Shaikh, K., and Hochstedt, E., Facile and efficient acetylation of primary alcohols and phenols with acetic anhydride catalyzed by dried sodium bicarbonate, Catalysts, 2013, vol. 3, no. 4, pp. 954–965.

    Article  CAS  Google Scholar 

  9. Bandi, P.R., Kura, R.R., Gazula, L.D.K., Adulla, P.R., Bammidi, E.R., Kasireddy, B.R., and Neela, S., WO Patent 2016147099, 2015.

    Google Scholar 

  10. Hatcher, M.A., Johns, B.A., Martin, M.T., Tabet, E.A., and Tang, J., WO Patent 2013090664, 2013.

    Google Scholar 

  11. Kuznetsova, S.A., Kuznetsov, B.N., Red’kina, E.S., Sokolenko, V.A., and Skvortsova, G.P., RF Patent 2324700, Byull. Izobret., 2008, no. 14.

    Google Scholar 

  12. Kuznetsova, S.A., Kuznetsov, B.N., and Skvortsova, G.P., RF Patent 2436791, Byull. Izobret., 2011, no. 35.

    Google Scholar 

  13. Pen, R.Z., Planirovanie eksperimenta v Statgraphics Centurion (The Design of Experiments in Statgraphics Centurion), Krasnoyarsk: Sib. Gos. Tekhnol. Univ., 2014.

    Google Scholar 

  14. Yatsenkova, O.V., Pen, R.Z., Chudina, A.I., Skripnikov, A.M., and Kuznetsov, B.N., Optimization of the hydrolysis of mechanically activated microcrystalline cellulose by diluted sulfuric acid, Khim. Tekhnol., 2015, vol. 16, no. 11, pp. 686–693.

    Google Scholar 

  15. Levdanskii, V.A., Levdanskii, A.V., Pen, R.Z., and Kuznetsov, B.N., Optimization of the recovery of betulin from alkali-hydrolyzed birch bark using aliphatic alcohols, Khim. Tekhnol., 2015, vol. 16, no. 10, pp. 614–619.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kuznetsova.

Additional information

Original Russian Text © S.A. Kuznetsova, B.N. Kuznetsov, Yu.N. Malyar, E.S. Skurydina, G.P. Skvortsova, R.Z. Pen, N.V. Chesnokov, O.A. Khanchich, 2017, published in Khimicheskaya Tekhnologiya, 2017, Vol. 18, No. 6, pp. 257–263.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, S.A., Kuznetsov, B.N., Malyar, Y.N. et al. Optimization of the Production Process of Biologically-Active Betulin Diacetate from Raw and Activated Birch Bark. Theor Found Chem Eng 52, 664–669 (2018). https://doi.org/10.1134/S0040579518040188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579518040188

Keywords

Navigation