Log in

Majorana tower and cellular automaton interpretation of quantum mechanics down to Planck scales

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

A deterministic reformulation of quantum mechanics is thought to be able to bypass the usual philosophical interpretations of probability and stochasticity of the standard quantum mechanical scenarios. Recently ’t Hooft proposed a different perspective based on the ontological formulation of quantum mechanics, obtained by writing the Hamiltonian of a quantum system in a way to render it mathematically equivalent to a deterministic system. The ontological deterministic models consist of elementary cells, also called cellular automata, inside which the quantities describing the dynamics oscillate in periodic orbits, extending and replacing the quantum mechanical classical language based on harmonic oscillators. We show that the structure of the cellular automaton sets finds a clear physical interpretation with the Majorana infinite-component equation: the cellular automata are elementary building blocks generated by the Poincaré group of spacetime transformations with positive-definite energy down to the Planck scales, with a close relation to the Riemann Hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. P. Marage and G. Wallenborn, “The Debate between Einstein and Bohr, or how to interpret quantum mechanics,” in: The Solvay Councils and the Birth of Modern Physics (Science Networks. Historical Studies, Vol. 22, P. Marage and G. Wallenborn, eds.), Birkhäuser, Basel (1999), pp. 161–174.

    Chapter  MATH  Google Scholar 

  2. J. S. Bell, “On the Einstein Podolsky Rosen paradox,” Phys. Phys. Fiz., 1, 195–200 (1964).

    MathSciNet  Google Scholar 

  3. J. S. Bell, Speakable and Unspeakable in Quantum Mechanics (Collected Papers on Quantum Philosophy), Cambridge Univ. Press, Cambridge (2004).

    Book  MATH  Google Scholar 

  4. M. Bell and S. Gao (eds.), Quantum Nonlocality and Reality: 50 Years of Bell’s Theorem, Cambridge Univ. Press, Cambridge (2016).

    Book  MATH  Google Scholar 

  5. V. Scarani, Bell Nonlocality, Oxford Univ. Press, Oxford (2019).

    Book  MATH  Google Scholar 

  6. D. Bohm, “A suggested interpretation of the quantum theory in terms of “hidden” variables. I,” Phys. Rev., 85, 166–179 (1952).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. G. ’t Hooft, “Deterministic quantum mechanics: The mathematical equations,” (Submitted to the Article Collection: “Towards a Local Realist View of the Quantum Phenomenon”), Front. Phys. Physics, 8, 253, 12 pp. (2020).

    Article  ADS  Google Scholar 

  8. I. Licata, “Quantum mechanics interpretation on Planck scale,” Ukr. J. Phys., 65, 17–30 (2020).

    Article  Google Scholar 

  9. P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford Univ. Press, Oxford (1947).

    MATH  Google Scholar 

  10. S. Hossenfelder, “Testing super-deterministic hidden variables theories,” Found. Phys., 41, 1521–1531 (2011), ar**v: 1105.4326; “Testing superdeterministic conspiracy,” J. Phys.: Conf. Ser., 504, 012018, 5 pp. (2014).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. S. Hossenfelder and T. Palmer, “Rethinking Superdeterminism,” Front. Phys., 8, 139, 13 pp. (2020).

    Article  Google Scholar 

  12. R. A. Bertlmann and A. Zeilinger (eds.), Quantum (Un)speakables: From Bell to Quantum Information, Springer, Berlin (2002); Quantum (Un)speakables II. Half a Century of Bell’s Theorem, Springer, Cham (2017).

    Book  Google Scholar 

  13. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev., 47, 777–780 (1935).

    Article  ADS  MATH  Google Scholar 

  14. G. ’t Hooft, “Explicit construction of Local Hidden Variables for any quantum theory up to any desired accuracy,” ar**v: 2103.04335.

  15. G. ’t Hooft, The Cellular Automaton Interpretation of Quantum Mechanics (Fundamental Theories of Physics, Vol. 185), Springer, Cham (2016).

    Book  MATH  Google Scholar 

  16. D. Schumayer and D. A. W. Hutchinson, “Colloquium: Physics of the Riemann hypothesis,” Rev. Modern Phys., 83, 307–330 (2011); Erratum, 769–769.

    Article  ADS  Google Scholar 

  17. E. Majorana, “Teoria relativistica di particelle con momentum internisico arbitrario,” Nuovo Cimento, 9, 335–344 (1932).

    Article  MATH  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 2: The Classical Theory of Fields, Pergamon Press, Oxford–London (1962).

    Google Scholar 

  19. F. Tamburini, I. Licata, and B. Thidé, “Relativistic Heisenberg principle for vortices of light from Planck to Hubble scales,” Phys. Rev. Res., 2, 033343, 5 pp. (2020).

    Article  Google Scholar 

  20. F. Tamburini and I. Licata, “Majorana quanta, string scattering, curved spacetimes and the Riemann Hypothesis,” Phys. Scr., 96, 125276, 26 pp. (2021).

    Article  ADS  Google Scholar 

  21. M. V. Berry and J. P. Keating, “The Riemann zeros and eigenvalues asymptotics,” SIAM Rev., 41, 236–266 (1999).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. M. V. Berry and J. P. Keating, “\(H=xp\) and the Riemann zeros,” in: Supersymmetry and Trace Formulae: Chaos and Disorder (Cambridge, UK, September 8–20, 1997, NATO Science Series B, Vol. 370, I. V. Lerner, J. P. Keating, and D. E. Khmelnitskii, eds.), Kluwer Academic Press, New York (1999), pp. 355–367.

    Chapter  Google Scholar 

  23. A. Connes, “Trace formula in noncommutative geometry and the zeros of the Riemann zeta function,” Selecta Math. (N.S.), 5, 29–106 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Strumia, “Interpretation of quantum mechanics with indefinite norm,” Physics, 1, 17–32 (2019).

    Article  ADS  Google Scholar 

  25. C. M. Bender, D. C. Brody, and M. P. Müller, “Hamiltonian for the zeros of the Riemann zeta function,” Phys. Rev. Lett., 118, 130201, 5 pp. (2017); ar**v: 1608.03679.

    Article  ADS  MathSciNet  Google Scholar 

  26. R. de la Madrid, “The role of the rigged Hilbert space in quantum mechanics,” Eur. J. Phys., 28, 287–312 (2005); ar**v: quant-ph/0502053.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. F. Tamburini and I. Licata, “General relativistic wormhole connections from Planck-scales and the ER=EPR conjecture,” Entropy, 22, 3, 14 pp. (2020).

    Article  ADS  MathSciNet  Google Scholar 

  28. I. Licata, “The big computer. Complexity and computability in physical universe,” in: Determinism, Holism, and Complexity (V. Benci, P. Cerrai, P. Freguglia, G. Israel, and C. Pellegrini, eds.), Springer, New York (2003), pp. 117–123.

    Chapter  Google Scholar 

  29. G. Preparata and S.-S. Xue, “The standard model on Planck lattice: Mixing angles vs quark masses,” Nuovo Cimento A, 109, 1455–1460 (1996).

    Article  ADS  Google Scholar 

  30. G. Preparata and S.-S. Xue, “Do we live on a lattice? Fermion masses from the Planck mass,” Phys. Lett. B, 264, 35–38 (1991).

    Article  ADS  Google Scholar 

  31. G. Preparata, “Quantum gravity, the Planck lattice and the Standard Model,” (Proceedings of the VII Marcel Grossman Meeting on General Relativity, Stanford, July 24–30, 1994, R. Ruffini, G. Mac Keiser, and R. T. Jantzen, eds.), World Sci., Singapore (1997), pp. 102–115; ar**v: hep-th/9503102.

    Google Scholar 

  32. J. Magueijo, A Brilliant Darkness: The Extraordinary Life and Mysterious Disappearance of Ettore Majorana, the Troubled Genius of the Nuclear Age, Basic Books, New York (2009).

    Google Scholar 

  33. R. Casalbuoni, “Majorana and the infinite component wave equations,” PoS (EMC2006), 37, 004, 15 pp. (2007); ar**v: hep-th/0610252.

    Google Scholar 

  34. S. W. Hawking, M. J. Perry, and A. Strominger, “Soft hair on black holes,” Phys. Rev. Lett., 116, 231301, 9 pp. (2016).

    Article  ADS  Google Scholar 

  35. S. W. Hawking, “Black hole explosions?,” Nature, 248, 30–31 (1974).

    Article  ADS  MATH  Google Scholar 

  36. F. Tamburini, M. D. Laurentis, I. Licata, B. Thidé, “Twisted soft photon hair implants on black holes,” Entropy, 19, 458, 9 pp. (2017).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Licata.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Prepared from an English manuscript submitted by the authors; for the Russian version, see Teoreticheskaya i Matematicheskaya Fizika, 2023, Vol. 214, pp. 308–317 https://doi.org/10.4213/tmf10375.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamburini, F., Licata, I. Majorana tower and cellular automaton interpretation of quantum mechanics down to Planck scales. Theor Math Phys 214, 265–272 (2023). https://doi.org/10.1134/S0040577923020101

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577923020101

Keywords

Navigation