Log in

Fundamentals of the Mechanics of a Turbulent Gas and Dust Medium for an Accretion Protoplanetary Disk

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract—In this paper, in relation to the problem of reconstructing the evolution of a preplanetary gas and dust cloud, an attempt is made to develop a model of a turbulent heterogeneous medium and to construct on this basis a new class of mathematical models of space media that take into how the character and development of turbulence are influenced by the inertial properties of a polydisperse mixture of dust particles, processes of heat and mass transfer and coagulation, phase transitions, chemical reactions, and radiation. This can significantly expand the capabilities of numerical modeling of various physical phenomena in complex space media such as accretion gas and dust disks formed in stars of various classes during their differential rotation around the center of gravity, to study their structure, physicochemical and hydrodynamic properties, and time evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

REFERENCES

  1. Abramovich, G.N. and Girshovich, T.A., On the diffusion of heavy particles in turbulent gas flows, Dokl. Akad. Nauk SSSR, 1973, vol. 212, no. 3, pp. 573–576.

    Google Scholar 

  2. Alfven, H. and Arrhenius, G., Evolution of the Solar System, Washington, DC: NASA, 1976.

    Google Scholar 

  3. Boothroyd, R., Flowing Gas–Solids Suspensions, London: Chapman and Hall, 1971.

    Google Scholar 

  4. Van Mieghem, J., Atmospheric Energetics, Oxford, UK: Clarendon Press, 1973.

    Google Scholar 

  5. Varaksin, A.Yu., Turbulentnye techeniya gaza s tverdymi chastitsami (Turbulent Gas Flows with Solid Particles), Moscow: Fizmatlit, 2003.

  6. Vereshchagin, I.P., Levitov, V.I., Mirzobekyan, G.Z., and Pashin, M.M., Osnovy elektrogazodinamiki dispersnykh system (Fundamentals of Electrogasdynamics of Disperse Systems), Moscow: Energiya. 1974.

  7. Voloshchuk, V.M. and Sedunov, Yu.S., Protsessy koagulyatsii v dispersnykh sistemakh (Coagulation Processes in Dispersed Systems), Leningrad: Gidrometeoizdat, 1975.

  8. Voloshchuk, V.M., Kineticheskaya teoriya koagulyatsii (Kinetic Theory of Coagulation), Moscow: Gidrometizdat, 1984.

  9. Gavin, L.B., Naumov, V.A., and Shor, V.V., Numerical study of a gas jet with heavy particles based on a two-parameter model, Prikl. Mekh. Tekh. Fiz., 1984, no. 1, pp. 62–67.

  10. Gorbis, Z.R., Teploobmen i gidromekhanika dispersnykh skvoznykh potokov (Heat Transfer and Hydromechanics of Dispersed through Flows), Moscow: Energiya, 1970.

  11. Gor’kavyi, N.N. and Fridman, A.M., Fizika planetnykh kolets (Physics of Planetary Rings), Moscow: Nauka, 1994.

  12. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., The Molecular Theory of Gases and Liquids, Hoboken, NJ: Wiley, 1954.

    Google Scholar 

  13. de Groot, S. and Mazur, P., Non-equilibrium Thermodynamics, Amsterdam: North-Holland, 1963.

    Google Scholar 

  14. Derevich, I.V., Influence of the admixture of large particles on the turbulenite characteristics of a gas suspension in channels, Prikl. Mekh. Tekh. Fiz., 1994, no. 2, pp. 70–78.

  15. Dorofeeva, V.A. and Makalkin, A.B., Evolyutsiya rannei Solnechnoi sistemy. Kosmokhimicheskie i fizicheskie aspekty (Evolution of the Early Solar System. Cosmochemical and Physical Aspects), Moscow: Editorial URSS. 2004.

  16. Zaichik, L.I. and Varaksin, A.Yu., The influence of the wake of large particles on the intensity of turbulence of the carrier flow, Teplofiz. Vys. Temp., 1999, vol. 37, no. 4, pp. 1004–1007.

    Google Scholar 

  17. Zuev, Yu.V. and Lepeshinskii, I.F., Mathematical model of a two-phase turbulent jet, Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaza, 1981, no. 6, pp. 69–77.

  18. Ievlev, V.M., Approximate equations of turbulent motion of an incompressible fluid, Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaza, 1970, no. 1, pp. 91–103.

  19. Ievlev, V.M., Turbulentnoe dvizhenie vysokotemperaturnykh sploshnykh sred (Turbulent Movement of High-Temperature Continuous Media), Moscow: Nauka, 1975.

  20. Kartushinskii, A.I., Transfer of inertial impurity in a two-phase turbulent jet, Izv. Akad. Nauk SSSR, Ser. Mekh. Zhidk. Gaza, 1984, no. 1, pp. 36–41.

  21. Kolesnichenko, A.V., On the theory of turbulence in planetary atmospheres. The numerical simulation of structural parameters, Astron. Vestn., 1995, vol. 29, no. 2, pp. 133–155.

    ADS  Google Scholar 

  22. Kolesnichenko, A.V., Stefan–Maxwell relations and heat flow for turbulent multicomponent continuums, in Problemy sovremennoi mekhaniki. K yubileyu L. I. Sedova (Problems of Modern Mechanics. To the Anniversary of L.I. Sedov), Moscow: Izd. Mos. Gos. Univ., 1998, pp. 52–76.

  23. Kolesnichenko, A.V. and Maksimov, V.M., The generalized Darcy law of filtration as inquest of Stefan–Maxwell relations for heterogeneous medium, Mat. Model., 2001, vol. 13, no. 1, pp. 3–25.

    MathSciNet  Google Scholar 

  24. Kolesnichenko, A.V. and Marov, M.Ya., Turbulentnost’ mnogokomponentnykh sred (Turbulence of Multicomponent Media), Moscow: MAIK-Nauka, 1999.

  25. Kolesnichenko, A.V., Modeling of the turbulent transport coefficients in a gas–dust accretion disk, Sol. Syst. Res., 2000, vol. 34, no. 6, pp. 469–480.

    Article  ADS  Google Scholar 

  26. Kolesnichenko, A.V., Hydrodynamic aspects of modeling of the mass transfer and coagulation processes in turbulent accretion disks, Sol. Syst. Res., 2001, vol. 35, no. 2, pp. 125–140.

    Article  ADS  Google Scholar 

  27. Kolesnichenko, A.V., Kontinual’nye modeli prirodnykh i kosmicheskikh sred: Problemy termodinamicheskogo modelirovaniya (Continuum Models of Natural and Cosmic Media: Problems of Thermodynamic Modeling), Moscow: LENAND, 2017.

  28. Kolesnichenko, A.V., Synergetic mechanism of the development of coherent structures in the continual theory of developed turbulence, Sol. Syst. Res., 2004, vol. 38, no. 5, pp. 351–371.

    Article  ADS  Google Scholar 

  29. Kolmogorov, A.N., Equations of turbulent motion of incompressible fluid, Izv. Akad. Nauk SSSR., Ser. Fiz., 1942, vol. 6, no. 1/2, pp. 56–58.

    Google Scholar 

  30. Kolmogorov, A.N., On a new version of the gravitational theory of the movement of suspended sediments, Vestn. Mos. Gos. Univ., 1954, no. 3, pp. 41–45.

  31. Landau, L.D. and Lifshitz, E.M., Gidrodinamika (Hydrodynamics), Moscow: Nauka, 1988.

    Google Scholar 

  32. Laikhtman, D.L., Fizika pogranichnogo sloya atmosfery (Physics of the Boundary Layer of the Atmosphere), Leningrad: Gidrometeoizdat, 1970.

  33. Mazin, I.P., Theoretical estimation of the coagulation coefficient of droplets in clouds, Trudy Tsentr. Aerol. Obs., 1971, vol. 95, pp. 12–25.

    Google Scholar 

  34. Makalkin, A.B. and Dorofeeva, V.A., Structure of the protoplanetary accretion disk around the Sun at T Tauri phase. I. Initial data, equations, and methods of modeling, Sol. Syst. Res., 1995, vol. 29, no. 2, pp. 85–104.

    ADS  Google Scholar 

  35. Makalkin, A.B. and Dorofeeva, V.A., The structure of the protoplanetary accretion disk around the Sun at the T Tauri stage: II. Results of model calculations, Sol. Syst. Res., 1996, vol. 30, no. 6, p. 440.

    ADS  Google Scholar 

  36. Makalkin, A.B., Problems of the evolution of protoplanetary disks, in Sovremennye problemy mekhaniki i fiziki kosmosa. K yubileyu M.Ya. Marova (Modern Problems of Mechanics and Physics of Space. To the Anniversary of M.Ya. Marov), Moscow: Fizmatlit, 2003, pp. 402–446.

  37. Makalkin, A.B., The specific features of the evolution of the viscous protoplanetary circumsolar disk, Sol. Syst. Res., 2004, vol. 38, no. 6, pp. 491–507.

    Article  ADS  Google Scholar 

  38. Marov, M.Ya. and Kolesnichenko, A.V., Vvedenie v planetnuyu aeronomiyu (Introduction to the Planetary Aeronomy), Moscow: Nauka, 1987.

  39. Mednikov, E.P., Turbulentnyi perenos i osazhdenie aerozolei (Turbulent Transport and Deposition of Aerosols), Moscow: Nauka, 1981.

  40. Monin, A.S. and Yaglom, A.M., Statisticheskaya gidrodinamika (Statistical Hydrodynamics), St. Petersburg: Gidrometeoizdat, 1992, vol. 1.

  41. Nigmatulin, R.I., Osnovy mekhaniki geterogennykh sred (Fundamentals of Mechanics of Heterogeneous Media), Moscow: Nauka, 1978.

  42. Prigozhin, I. and Defei, R., Khimicheskaya termodinamika (Chemical Thermodynamics), Novosibirsk: Nauka, 1966.

  43. Prigozhin, I. and Stengers, I., Vremya. Khaos. Kvant. K resheniyu paradoksa vremeni (Time. Chaos. Quantum. Toward a Solution to the Time Paradox), Moscow: Izd. gruppa Progress, 1994.

  44. Safronov, V.S., Evolyutsiya doplanetnogo oblaka i obrazovanie Zemli i planet (Evolution of the Protoplanetary Cloud and the Formation of the Earth and Planets), Moscow: Nauka, 1969.

  45. Safronov, V.S., Current state of the theory of the origin of the Earth, Fiz. Zemli, 1982, no. 6, pp. 5–24.

  46. Safronov, V.S., The evolution of the dust component of the circumsolar protoplanetary disk, Astron. Vestn., 1987, vol. 21, no. 3, pp. 216–220.

    ADS  Google Scholar 

  47. Safronov, V.S. and Guseinov, K.M., The possibility of the formation of comets in situ, Astron. Vestn., 1990, vol. 24, no. 3, pp. 248–256.

    ADS  Google Scholar 

  48. Smolukhovskii, M., Tri doklada o diffuzii, brounovskom molekulyarnom dvizhenii i koagulyatsii kolloidnykh chastits. Brounovskoe dvizhenie (Three Reports on Diffusion, Brownian Molecular Motion and Coagulation of Colloidal Particles. Brownian Motion), Moscow: Izd. ONTI, 1936; Koagulyatsiya kolloidov (Coagulation of Colloids), Moscow: Izd. ONTI, 1936.

  49. Sternin, L.E., Maslov, B.N., Shraiber, A.A., and Podvysotskii, A.M., Dvukhfaznye mono- i polidispersnye techeniya gaza s chastitsami (Two-Phase Mono- And Polydisperse Gas Flows with Particles), Moscow: Mashinostroenie, 1980.

  50. Sternin, L.E. and Shraiber, A.A., Mnogofaznye techeniya gaza s chastitsami (Multiphase Gas Flows with Particles), Moscow: Mashinostroenie, 1994.

  51. Tassoul, J.-L., Theory of Rotating Stars, Princeton, NJ: Princeton Univ. Press, 1978.

    Google Scholar 

  52. Townsend, A.A., The Structure of Turbulent Shear Flow, Cambridge: Cambridge Univ. Press, 1956.

    Google Scholar 

  53. Fortov, V.E., Khrapak, A.G., and Yakubov, I.T., Fizika neideal’noi plazmy (Physics of Non-Ideal Plasma), Moscow: Fizmatlit, 2004.

  54. Fridman, F.M., The dynamics of a viscous differentially rotating gravitating medium, Pis’ma Astron. Zh., 1989, vol. 15, no. 12, pp. 1122–1130.

    ADS  Google Scholar 

  55. Fuks, N.A., Mekhanika aerozolei (Aerosol Mechanics), Moscow: Izd. Akad. Nauk SSSR, 1955.

  56. Chapman, S. and Cowling, T.G., The Mathematical Theory of Non-Uniform Gases, Cambridge: Cambridge Univ. Press, 1941.

    Google Scholar 

  57. Shapiro, S. and Teukolsky, S., Black Holes, White Dwarfs, and Neutron Stars, New York: Wiley, 1983.

    Book  Google Scholar 

  58. Schlichting, H., Boundary-Layer Theory, Oxford, UK: Pergamon Press, 1955.

    Google Scholar 

  59. Shmidt, O.Yu., Chetyre lektsii o proiskhozhdenii Zemli (Four Lectures on the Origin of the Earth), Moscow: Izd. Akad. Nauk SSSR, 1957, 3rd ed.

  60. Shraiber, A.A., Milyutin, V.N., and Yatsenko, V.P., Turbulentnye techeniya gazovzvesi (Turbulent Flows of Gas Suspension), Kiev: Naukova dumka, 1987.

  61. Shraiber, A.A., Gavin, L.B., Naumov, V.A., and Yatsenko, V.P., Gidromekhanika dvukhkomponentnykh potokov s tverdym polidispersnym veshchestvom (Hydromechanics of Two-Component Flows with Solid Polydisperse Matter), Kiev: Naukova dumka, 1980.

  62. Armitage, P.J., Livio, M., and Pringle, J.E., Episodic accretion in magnetically layered protoplanetary disks, Mon. Not. R. Astron. Soc., 2001, vol. 324, pp. 705–711.

    Article  ADS  Google Scholar 

  63. Balbus, S.A. and Hawley, J.F., Instability, turbulence, and enhanced transport in accretion disks, Rev. Mod. Phys., 1998, vol. 70, pp. 1–53.

    Article  ADS  Google Scholar 

  64. Barge, P. and Sommeria, J., Did planet formation begin inside persistent gaseous vortices?, Astron. Astrophys., 1995, vol. 295, pp. L1–L4.

    ADS  Google Scholar 

  65. Beckwith, S.V.W., Henning, T., and Nakagawa, Y., Dust properties and assembly of large particles in protoplanetary disks, in Protostars and Planets IV, Mannings, V., Boss, A.P., and Russell, S.S., Eds., Tucson: Univ. Arizona Press, 2000, pp. 533–558.

    Google Scholar 

  66. Bisnovaty-Kogan, G.S. and Lovelace, R.V.E., Advective accretion disks and related problems including magnetic fields, New Astron. Rev., 2001, vol. 45, pp. 663–742.

    Article  ADS  Google Scholar 

  67. Bryden, G., Chen, X., Lin, D., Nelson, R., and Papaloizou, J., Tidally induced gap formation in protostellar disks: Gap clearing and suppression of protoplanetary growth, Astrophys. J., 1999, vol. 514, p. 344.

    Article  ADS  Google Scholar 

  68. Cabot, W., Canuto, V.M., Hubickyj, O., and Pollack, J.B., The role of turbulent convection in the primitive solar nebula, Icarus, 1987, vol. 69, pp. 387–423.

    Article  ADS  Google Scholar 

  69. Chavanis, P.-H., Trap** of dust by coherent vortices in the solar nebula, ar**v:astro-ph/9912087, 1999, vol. 16, pp. 1–54.

  70. Cuzzi, J.N., Dobrovolskis, A.R., and Champney, J.M., Particle-gas dynamics in the midplane of a protoplanetary nebula, Icarus, 1993, vol. 106, pp. 102–134.

    Article  ADS  Google Scholar 

  71. Cuzzi, J.N., Davis, S.S., and Dobrovolskis, A.R., Blowing in the wind. II. Creation and redistribution of refractory inclusions in a turbulent protoplanetary nebula, Icarus, 2003, vol. 166, pp. 385–402.

    Article  ADS  Google Scholar 

  72. Cuzzi, J.N., Blowing in the wind: III. Accretion of dust rims by chondrule-sized particles in a turbulent protoplanetary nebula, Icarus, 2004, vol. 168, pp. 484–497.

    Article  ADS  Google Scholar 

  73. Cuzzi, J.N., Ciesla, F.J., Petaev, M.I., Krot, A.N., Scott, E.R.D., and Weidenschilling, S., Nebula evolution of thermally processed solids: Reconciling models and meteorites chondrites and the protoplanetary disk, ASP Conference Series, vol. 341: Proceedings of a Workshop Held 8–11 November 2004 in Kaua’i, Ha-wai’i, Krot, A.N., Scott, E.R.D., and Reipurth, B., Eds., San Francisco: Astronomical Society of the Pacific, 2005, pp. 732–773.

  74. Cuzzi, J.N. and Weidenschilling, S.J., Particle–gas dynamics and primary accretion, in Meteorites and the Early Solar System II, Lauretta, D., Leshin, L.A., and McSween, H., Eds., Tucson: Univ. Arizona Press, 2006, pp. 353–381.

    Google Scholar 

  75. Danon, H., Wolfshtein, M., and Hetsroni, G., Numerical calculation of two-phase turbulent round jet, Int. Multiphase Flow, 1977, vol. 3, no. 3, pp. 223–234.

    Article  Google Scholar 

  76. Dominik C., Blum J., Cuzzi J., and Wurm G., Growth of dust as the initial step toward planet formation, in Protostars and Planets V, Tucson: Univ. Arizona Press, 2007.

    Google Scholar 

  77. Dubrulle, B., A turbulent closure model for thin accretion disks, Astron. Astrophys., 1992, vol. 266, pp. 592–604.

    ADS  Google Scholar 

  78. Dubrulle, B., Differentional rotation as a source of angular momentum transfer in the solar nebula, Icarus, 1993, vol. 106, pp. 59–76.

    Article  ADS  Google Scholar 

  79. Dubrulle, B., Morfill, G., and Sterzic, M., The dust subdisk in the protoplanetary nebula, Icarus, 1995, vol. 114, pp. 237–246.

    Article  ADS  Google Scholar 

  80. Dullemond, C.P. and Dominik, C., Dust coagulation in protoplanetary disks: A rapid depletion of small grains, Astron. Astrophys., 2005, vol. 434, pp. 971–986.

    Article  ADS  Google Scholar 

  81. Eardley, D.M. and Lightman, A.P., Magnetic viscosity in relativistic accretion discs, Astrophys. J., 1975, vol. 200, pp. 187–198.

    Article  ADS  Google Scholar 

  82. Eardley, D.M., Lightman, A.P., Payne, D.G., and Shapiro, S.L., Accretion discs around massive black holes; persistent emission spectra, Astrophys. J., 1978, vol. 234, p. 53.

    Article  ADS  Google Scholar 

  83. Elghobashi, S.E. and Abou-Arab, T.W., A second-order turbulence model for two-phase flows, Heat Transfer, 1982, vol. 5, pp. 219–224.

    Google Scholar 

  84. Elghobashi, S.E. and Abou-Arab, T.W., A two-equation turbulence model for two-phase flows, Phys. Fluids, 1983, vol. 26, no. 4, pp. 931–938.

    Article  ADS  Google Scholar 

  85. Epstein, P.S., On the resistance experienced by spheres in their motion through gases, Phys. Rev., 1924, vol. 23, pp. 710–733.

    Article  ADS  Google Scholar 

  86. Favre, A., Equations statistiques des gaz turbulents, C.R. Academie des Sciences, 1958.

    Google Scholar 

  87. Fridman, A.M., Boyarchuck, F.F., Bisikalo, D.V., Kuznetsov, O.A., Khoruzhii, O.V., Torgashin, Yu.M., and Kilpio, A.A., The collective mode and turbulent viscosity in accretion disks, Phys. Lett. A, 2003, vol. 317, pp. 181–198.

    Article  ADS  MathSciNet  Google Scholar 

  88. Garaud, P., Barriere-Fouchet, L., and Lin, D.N.C., Individual and collective behavior of dust particles in a protoplanetary nebula, J. Astrophys., 2005, vol. 603, pp. 292–306.

    Article  ADS  Google Scholar 

  89. Goldrich, P. and Ward, W.R., The formation of planetesimals, Astrophys. J., 1973, vol. 183, no. 3, pp. 1051–1061.

    Article  ADS  Google Scholar 

  90. Goodmann, J. and Pindor, B., Secular instability and planetesimal formation in the dust layer, Icarus, 2000, vol. 148, pp. 537–549.

    Article  ADS  Google Scholar 

  91. Gore, R.A. and Crowe, C.T., Effect of particle size on modulating turbulent intensity, Int. J. Multiphase Flow, 1989, vol. 15, no. 2, pp. 279–285.

    Article  Google Scholar 

  92. Grad, H., On the kinetic theory of rarefied gases, Commun. Pure Appl. Math., 1949, vol. 2, p. 331.

    Article  MathSciNet  Google Scholar 

  93. Hazlehurst, J. and Sargent, W.L.W., Astrophys. J., 1959, vol. 130, pp. 276–285.

    Article  ADS  MathSciNet  Google Scholar 

  94. Hayashi, C., Nakazawa, K., and Nakagawa, Y., Formation of the Solar System, in Protostars and Planets II, Black, D.C. and Matthews, M.S., Eds., Tucson: Univ. Arizona Press, 1985, pp. 1100–1153.

    Google Scholar 

  95. Hersant, F., Dudrulle, B., and Hure, J.-M., Turbulence in circumstellar disks, Astron. Astrophys., manuscript no. aa3549, 2004, pp. 1–12.

  96. Hunter, S.C., Cherry, S.S., Kliegel, J.R., and Waldman, C.H., Gas-particle nozzle flow with reaction and particle size change, AIAA Paper, 1981, no. 37, p. 14.

  97. Kusaka, T., Nakano, N., and Hayashi, C., Growth of solid particles in the primordial solar nebula, Prog. Theor. Phys., 1970, vol. 44, pp. 1580–1595.

    Article  ADS  Google Scholar 

  98. Leonard, A., Energy cascade in large eddy simulations of turbulent fluid flous, Adv. Geophys., 1974, vol. 18, pp. 237–248.

    Article  ADS  Google Scholar 

  99. Lin, D.N.C. and Papaloizou, J., On the structure and evolution of the primordial solar nebula, Mon. Not. Roy. Astron. Soc., 1980, vol. 191, pp. 37–48.

    ADS  Google Scholar 

  100. Lissauer, J.J. and Stewart, G.R., Growth of planets from planetesimals, in Protostars and Planets III, Levy, E.H. and Lunine, I.J., Eds., Tucson: Univ. Arizona Press, 1993, pp. 1061–1088.

    Google Scholar 

  101. Makalkin, A.B., Radial compaction of the dust subdisk in a protoplanetary disk as possible way to gravitational instability, Lunar Planet. Sci., 1994, vol. 25, pp. 827–828.

    ADS  Google Scholar 

  102. Marov, M.Ya. and Kolesnichenko, A.V., Mechanics of Turbulence of Multi-Component Gases, Dordrecht: Kluwer Academic Publishers, 2002.

    Google Scholar 

  103. Melville, W.K. and Bray, K.N.C., A model of the two-phase turbulent jet, Int. J. Heat Mass Transfer, 1979, vol. 22, pp. 647–656.

    Article  ADS  Google Scholar 

  104. Morkovin, M.V., Effects of compressibility on turbulent flow, in Mechanics of Turbulence, New York: Gordon and Breach, 1961.

    Google Scholar 

  105. Nakagawa, Y., Nakagawa, K., and Hayashi, C., Growth and sedimentation of dust grains in the primordial solar nebula, Icarus, 1981, vol. 45, pp. 517–528.

    Article  ADS  Google Scholar 

  106. Nakagawa, Y., Sekiya, M., and Hayashi, C., Settling and growth of dust particles in a laminar phase of a low-mass solar nebula, Icarus, 1986, vol. 67, pp. 375–390.

    Article  ADS  Google Scholar 

  107. Natta, A., Testi, L., Calvet, N. Henning, T., Waters, R., and Wilner D., Dust in proto-planetary discs: Properties and evolution, in Protostars and Planets V, Tucson: Univ. Arizona Press, 2007.

    Google Scholar 

  108. Nomura, H., Structure and instabilities of an irradiated viscous protoplanetary disks, Astrophys. J., 2002, vol. 567, pp. 587–595.

    Article  ADS  Google Scholar 

  109. Pollack, J.B., McKay, C.P., and Cristofferson, B.M., A calculation of a Rosseland mean opacity of dust grains in primordial solar system nebulae, Icarus, 1985, vol. 64, pp. 473–492.

    Article  ADS  Google Scholar 

  110. Richard, D. and Zahn, J.-P., Turbulence in differentially rotating flow. what can be learned from the Couette–Taylor experiment, Astron. Astrophys., 1999, vol. 347, pp. 734–738.

    ADS  Google Scholar 

  111. Ruden, S.P. and Pollack, J.B., The dynamical evolution of the protosolar nebula, Asrophys. J., 1991, vol. 375, pp. 740–760.

    Article  ADS  Google Scholar 

  112. Russell, S.S., Hartmann, L.A., Cuzzi, J.N., Krot, A.N., and Weidenschilling, S.J., Timescales of the solar protoplanetary disk, in Meteorites and the Early Solar System, II, Lauretta, D., Leshin, L.A., and McSween, H., Eds., Tucson: Univ. Arizona Press, 2006, pp. 233–251.

    Google Scholar 

  113. Sekiya, M. and Nakagawa, Y., Settling of dust particles and formation of planetesimals, Prog. Theor. Phys. Suppl., 1988, vol. 96, pp. 141–150.

    Article  ADS  Google Scholar 

  114. Shakura, N.I. and Sunyaev, R.A., Black holes in binary systems. Observational appearance, Astron. Astrophys., 1973, vol. 24, pp. 337–355.

    ADS  Google Scholar 

  115. Shakura, N.I., Sunyaev, R.A., and Zilitinkevich, S.S., On the turbulent energy transport in accretion disk, Astron. Astrophys., 1978, vol. 62, pp. 179–187.

    ADS  Google Scholar 

  116. Schmitt, W., Henning, T., and Mucha, R., Dust evolution in protoplanetary accretion disks, Astron. Astrophys., 1997, vol. 325, pp. 569–584.

    ADS  Google Scholar 

  117. Soo, S.L., Ihrig, H.K., and Kouh, A.F., Experimental determination of statistical properties of two-phase turbulent motion, Trans. ASME J. Basic Eng., 1960, vol. 82, no. 3, pp. 609–621.

    Article  Google Scholar 

  118. Stepinski, T.F. and Valageas, P., Global evolution of solid matter in turbulent protoplanetary disks. I. Aerodynamics of solid particles, Astron. Astrophys., 1996, vol. 309, pp. 301–312.

    ADS  Google Scholar 

  119. Stepinski, T.F. and Valageas, P., Global evolution of solid matter in turbulent protoplanetary disks. II. Development of icy planetesimals, Astron. Astrophys., 1997, vol. 319, pp. 1007–1019.

    ADS  Google Scholar 

  120. Stokes, G.G., On the effect of the internal friction of fluids on the motion of pendulums, Trans. Camb. Phil. Soc., 1851, vol. 9, part 2, pp. 8–106.

    ADS  Google Scholar 

  121. Takeuchi, T. and Lin, D.N.C., Radial flow of dust particles in accretion disks, Astrophys. J., 2002, vol. 581, no. 2, pp. 1344–1355.

    Article  ADS  Google Scholar 

  122. Takeuchi, T. and Lin, D.N.C., Surface out in optically thick dust disks by the radiation pressure, Astrophys. J., 2003, vol. 593, pp. 524–538.

    Article  ADS  Google Scholar 

  123. Tanga, P., Babiano, A., and Dubrulle, B., Forming planetesimals in vortices, Icarus, 1996, vol. 121, pp. 158–170.

    Article  ADS  Google Scholar 

  124. Toomre, A., On the gravitational stability of a disk of stars, Astrophys. J., 1964, vol. 139, pp. 1217–1238.

    Article  ADS  Google Scholar 

  125. Wadhwa, M., Amelin, Y. Davis, A.M., Lugmair, G.W., Meyer B., Gounelle, M., and Desch, S.J., From dust to planetesimals: Implications for the solar protoplanetary disk from short-lived radionuclides, in Protostars and Planets V, Tucson: Univ. Arizona Press, 2007.

    Google Scholar 

  126. Wasson, J.T., Meteorites: Their Record of Early Solar-System History, New York: W.H. Freeman and Co., 1985.

    Google Scholar 

  127. Watanabe, S., Nakagawa, Y., and Nakazawa, K., Cooling and quasi-static con-traction of the primitive solar nebula after gas accretion, Astrophys. J., 1990, vol. 358, pp. 282–292.

    Article  ADS  Google Scholar 

  128. Weidenschilling, S.J., Aerodynamics of solid bodies in the solar nebula, Mon. Not. R. Astron. Soc., 1977, vol. 18, pp. 57–70.

    Article  ADS  Google Scholar 

  129. Weidenschilling, S.J., Dust to planetesimals: Settling and coagulation in the solar nebula, Icarus, 1980, vol. 44, pp. 172–189.

    Article  ADS  Google Scholar 

  130. Weidenschilling, S.J., Evolution of grains in a turbulent solar nebula, Icarus, 1984, vol. 60, pp. 553–567.

    Article  ADS  Google Scholar 

  131. Whipple, F.L., From Plasma to Planet, London: Wiley, 1972.

    Google Scholar 

  132. Willacy, K., Klahr, H.H., Millar, T.J., and Henning, Th., Gas and grain chemistry in a protoplanetary disk, Astron. Astrophys., 1998, vol. 338, pp. 995–1005.

    ADS  Google Scholar 

  133. Woods, J.D., Drake, J.C., and Goldsmith, P., Coalescence in a turbulent cloud, Quart. J. Roy. Met. Soc., 1972, vol. 98, pp. 135–149.

    ADS  Google Scholar 

  134. Yarin, L.P. and Hetsroni, G., Turbulence intensity in dilute two-phase flow 3. The particles-turbulence interaction in dilute two-phase flow, Int. J. Multiphase Flow, 1994, vol. 20, no. 1, pp. 27–44.

    Article  Google Scholar 

  135. Youdin, A.N. and Shu, F., Planetesimal formation by gravitational instability, Astrophys. J., 2002, vol. 580, pp. 494–505.

    Article  ADS  Google Scholar 

  136. Youdin, A.N. and Goodman, J., Streaming instabilities in protoplanetary disks, ar**v: astro-ph/0409263, 2004, vol. 1, pp. 1–26.

  137. Zel’dovich, Ya.B., On the friction of fluids between rotating cylinders, Proc. R. Soc. London, 1981, vol. A374, pp. 299–312.

    ADS  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Kolesnichenko.

Ethics declarations

The author of this work declares that he has no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolesnichenko, A.V. Fundamentals of the Mechanics of a Turbulent Gas and Dust Medium for an Accretion Protoplanetary Disk. Sol Syst Res 57, 655–705 (2023). https://doi.org/10.1134/S0038094623070043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094623070043

Navigation