Log in

Recognition of Affine-Equivalent Polyhedra by Their Natural Developments

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

The classical Cauchy rigidity theorem for convex polytopes reads that if two convex polytopes have isometric developments then they are congruent. In other words, we can decide whether two convex polyhedra are isometric or not by only using their developments. We study a similar problem of whether it is possible to understand that two convex polyhedra in Euclidean 3-space are affine-equivalent by only using their developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Aigner M. and Ziegler G.M., Proofs from THE BOOK. 6th ed., Springer, Berlin (2018).

    Book  MATH  Google Scholar 

  2. Alexandrov A.D., Convex Polyhedra, Springer, Berlin etc. (2005).

    MATH  Google Scholar 

  3. Lyusternik L.A., Convex Figures and Polyhedra, Dover, New York (1963).

    MATH  Google Scholar 

  4. Devadoss S.L. and O’Rourke J., Discrete and Computational Geometry, Princeton University, Princeton (2011).

    MATH  Google Scholar 

  5. Hartley R. and Zisserman A., Multiple View Geometry in Computer Vision, Cambridge University, Cambridge (2004).

    Book  MATH  Google Scholar 

  6. Cauchy A.L., “Sur les polygones et polyèdres. Second Mémoire,” in: Oeuvres Complètes, Cambridge University, Cambridge (2009), 26–38.

  7. Connelly R., “Rigidity,” in: Handbook of Convex Geometry. Vol. A, North-Holland, Amsterdam (1993), 223–271.

  8. Demaine E.D. and O’Rourke J., Geometric Folding Algorithms. Linkages, Origami, Polyhedra, Cambridge University, Cambridge (2007).

    Book  MATH  Google Scholar 

  9. Sabitov I.Kh., “Around the proof of the Legendre–Cauchy lemma on convex polygons,” Sib. Math. J., vol. 45, no. 4, 740–762 (2004).

    Article  MathSciNet  Google Scholar 

  10. Hadamard J., Leçons de géométrie élémentaire. II. Géométrie dans l’espace. 8th ed., Colin, Paris (1949).

    MATH  Google Scholar 

  11. Schwartz R.E., Mostly Surfaces, Amer. Math. Soc., Providence (2011).

    Book  MATH  Google Scholar 

  12. Dolbilin N.P., “Rigidity of convex polyhedrons,” Quantum, vol. 9, no. 1, 8–13 (1998).

    MathSciNet  Google Scholar 

  13. Fuchs D. and Tabachnikov S., Mathematical Omnibus. Thirty Lectures on Classic Mathematics, Amer. Math. Soc., Providence (2007).

    Book  MATH  Google Scholar 

  14. Dolbilin N.P., Shtan’ko M.A., and Shtogrin M.I., “Rigidity of zonohedra,” Russian Math. Surveys, vol. 51, no. 2, 326–328 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  15. Dolbilin N.P., Shtan’ko M.A., and Shtogrin M.I., “Nonbendability of a division of a sphere into squares,” Dokl. Math., vol. 55, no. 3, 385–387 (1997).

    MATH  Google Scholar 

  16. Dolbilin N.P., Shtan’ko M.A., and Shtogrin M.I., “Rigidity of a quadrillage of the torus,” Russian Math. Surveys, vol. 54, no. 4, 839–840 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  17. Shtogrin M.I., “Rigidity of quadrillage of the pretzel,” Russian Math. Surveys, vol. 54, no. 5, 1044–1045 (1999).

    Article  MathSciNet  MATH  Google Scholar 

  18. Bowers J.C., Bowers Ph.L., and Pratt K., “Rigidity of circle polyhedra in the 2-sphere and of hyperideal polyhedra in hyperbolic 3-space,” Trans. Amer. Math. Soc., vol. 371, no. 6, 4215–4249 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  19. Morozov E.A., “Symmetries of 3-polytopes with fixed edge length,” Sib. Electr. Math. Reports, vol. 17, 1580–1587 (2020).

    MathSciNet  MATH  Google Scholar 

  20. Aleksandrov A.D., “Existence of a given polyhedron and of a convex surface with a given metric,” C. R. (Dokl.) Acad. Sci. USSR, Ser., vol. 30, no. 2, 103–106 (1941) [Russian].

    MathSciNet  MATH  Google Scholar 

  21. Alexandroff A., “Existence of a convex polyhedron and of a convex surface with a given metric,” Rec. Math. [Mat. Sbornik] N.S., vol. 11(53), no. 1, 15–65 (1942) [Russian].

    MathSciNet  MATH  Google Scholar 

  22. Pogorelov A.V., Extrinsic Geometry of Convex Surfaces, Amer. Math. Soc., Providence (1973).

    Book  MATH  Google Scholar 

  23. Stoker J.J., “Uniqueness theorems for some open and closed surfaces in three-space,” Ann. Scuola Norm. Super. Pisa, Cl. Sci., IV. Ser., vol. 5, no. 4, 657–677 (1978).

    MathSciNet  MATH  Google Scholar 

  24. Gálvez J.A., Martínez A., and Teruel J.L., “On the generalized Weyl problem for flat metrics in the hyperbolic 3-space,” J. Math. Anal. Appl., vol. 410, no. 1, 144–150 (2014).

    Article  MathSciNet  MATH  Google Scholar 

  25. Guan P. and Lu S., “Curvature estimates for immersed hypersurfaces in Riemannian manifolds,” Invent. Math., vol. 208, no. 1, 191–215 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  26. Bakel’man I.Ya., Verner A.L., and Kantor B.E., Introduction to Differential Geometry “in the Large,” Nauka, Moscow (1973) [Russian].

    Google Scholar 

  27. Lewy H., “On the existence of a closed convex surface realizing a given Riemannian metric,” Proc. Natl. Acad. Sci. USA, vol. 24, no. 2, 104–106 (1938).

    Article  MATH  Google Scholar 

  28. Efimov N.V., “Qualitative problems of the theory of deformation of surfaces,” Uspekhi Mat. Nauk, vol. 3, no. 2, 47–158 (1948) [Russian].

    MathSciNet  MATH  Google Scholar 

  29. Volkov Yu.A., “On the existence of a polyhedron with prescribed metric,” in: Proceedings of the Third All-Union Mathematical Congress. V. 1, Moscow, June–July 1956, Academy of Sciences of the USSR, Moscow (1958), 146 [Russian].

  30. Volkov Yu.A., “Existence of a polyhedron with prescribed development. I,” Vestn. Leningr. Univ., Mat. Mekh. Astron., vol. 19, no. 4, 75–86 (1960) [Russian].

    MathSciNet  Google Scholar 

  31. Volkov Yu.A. and Podgornova E.G., “Existence of a polyhedron with prescribed development,” Uch. Zap. Tashk. Gos. Pedagog. Inst. Im. Nizami, vol. 85, 3–54 (1972) [Russian].

    Google Scholar 

  32. Volkov Yu.A., “Existence of a polyhedron with prescribed development,” J. Math. Sci., New York, vol. 251, no. 4, 462–479 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  33. Bobenko A.I. and Izmestiev I., “Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes,” Ann. Inst. Fourier, vol. 58, no. 2, 447–505 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  34. Izmestiev I., “A variational proof of Alexandrov’s convex cap theorem,” Discrete Comput. Geom., vol. 40, no. 4, 561–585 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  35. Shtogrin M.I., “Degeneracy criterion for a convex polyhedron,” Russian Math. Surveys, vol. 67, no. 5, 951–953 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  36. Jasiulek M. and Korzyński M., “Isometric embeddings of 2-spheres by embedding flow for applications in numerical relativity,” Class. Quantum Grav., vol. 29 (2012) (Article 155018, 14 pp.).

  37. Kane D., Price G.N., and Demaine E.D., “A pseudopolynomial algorithm for Alexandrov’s theorem,” in: Algorithms and Data Structures, Springer, Cham (2009), 435–446 (Lect. Notes Comput. Sci.; vol. 5664).

  38. Ray S., Miller W.A., Alsing P.M., and Yau S.T., “Adiabatic isometric map** algorithm for embedding 2-surfaces in Euclidean 3-space,” Class. Quantum Grav., vol. 32 (2015) (Article no. 235012, 17 pp.).

  39. Tichy W., McDonald J.R., and Miller W.A., “New efficient algorithm for the isometric embedding of 2-surface metrics in three dimensional Euclidean space,” Class. Quantum Grav., vol. 32 (2015) (Article 015002, 16 pp.).

  40. Berger M., Geometry. I, Springer, Berlin (1987).

    MATH  Google Scholar 

  41. Wenninger M.J., Polyhedron Models, Cambridge University, Cambridge (1971).

    Book  MATH  Google Scholar 

  42. Zalgaller V.A., “Convex polyhedra with regular faces,” Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), vol. 2, 1–220 (1967) [Russian].

    MathSciNet  Google Scholar 

  43. Grünbaum B. and Shephard G.C., “Spherical tilings with transitivity properties,” in: The Geometric Vein. The Coxeter Festschrift, Springer, New York (1982), 65–98.

  44. Sakano Y. and Akama Y., “Anisohedral spherical triangles and classification of spherical tilings by congruent kites, darts and rhombi,” Hiroshima Math. J., vol. 45, no. 3, 309–339 (2015).

    MathSciNet  MATH  Google Scholar 

  45. Gluck H., “Almost all simply connected closed surfaces are rigid,” in: Geometric Topology. Proceedings of the Geometric Topology Conference Held at Park City, Utah, 1974, Springer, Berlin (1975), 225–239 (Lect. Notes Math.; vol. 438).

  46. Bowers J.C., Bowers Ph.L., and Pratt K., “Almost all circle polyhedra are rigid,” Geom. Dedicata, vol. 203, 337–346 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  47. Legendre A.M., Eléments de géometrie, avec des notes (Ed. 1794), Hachette BNF, Paris (2018).

    Google Scholar 

  48. Sabitov I.Kh., “Algebraic methods for solution of polyhedra,” Russian Math. Surveys, vol. 66, no. 3, 445–505 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  49. Connelly R., “The rigidity of suspensions,” J. Differ. Geom., vol. 13, no. 3, 399–408 (1978).

    MathSciNet  MATH  Google Scholar 

  50. Sabitov I.Kh., “Algorithmic testing for the deformability of suspensions,” J. Soviet Math., vol. 51, no. 5, 2584–2586 (1990).

    Article  MATH  Google Scholar 

  51. Maehara H., “On a special case of Connelly’s suspension theorem,” Ryukyu Math. J., vol. 4, 35–45 (1991).

    MathSciNet  MATH  Google Scholar 

  52. Stachel H., “Flexible cross-polytopes in the Euclidean 4-space,” J. Geom. Graph., vol. 4, no. 2, 159–167 (2000).

    MathSciNet  MATH  Google Scholar 

  53. Mikhalev S.N., “Some necessary metric conditions for flexibility of suspensions,” Mosc. Univ. Math. Bull., vol. 56, no. 3, 14–20 (2001).

    MathSciNet  MATH  Google Scholar 

  54. Slutskiy D.A., “A necessary flexibility condition for a nondegenerate suspension in Lobachevsky 3-space,” Sb. Math., vol. 204, no. 8, 1195–1214 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  55. Gaifullin A.A., “Embedded flexible spherical cross-polytopes with nonconstant volumes,” Proc. Steklov Inst. Math., vol. 288, 56–80 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  56. Tarski A., A Decision Method for Elementary Algebra and Geometry, Univ. California, Berkeley (1951).

    Book  MATH  Google Scholar 

  57. Seidenberg A., “A new decision method for elementary algebra,” Ann. Math., vol. 60, no. 2, 365–374 (1954).

    Article  MathSciNet  MATH  Google Scholar 

  58. Alexandrov V., “How to decide whether two convex octahedra are affinely equivalent using their natural developments only,” J. Geom. Graph., vol. 26, no. 1, 29–38 (2022).

    MathSciNet  MATH  Google Scholar 

Download references

Funding

The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project FWNF–2022–0006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Alexandrov.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 2, pp. 252–275. https://doi.org/10.33048/smzh.2023.64.202

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, V.A. Recognition of Affine-Equivalent Polyhedra by Their Natural Developments. Sib Math J 64, 269–286 (2023). https://doi.org/10.1134/S0037446623020027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446623020027

Keywords

UDC

Navigation