Log in

The polynomial sub-Riemannian differentiability of some Hölder map**s of Carnot groups

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

The polynomial sub-Riemannian differentiability is established for the large classes of Hölder map**s in the sub-Riemannian sense, namely, the classes of smooth map**s, their graphs, and the graphs of Lipschitz map**s in the sub-Riemannian sense defined on nilpotent graded groups. We also describe some special bases that carry the sub-Riemannian structure of the preimage to the image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrachev A. A. and Sachkov Yu. L., Control Theory from the Geometric Viewpoint, Springer-Verlag, Berlin 2004).

    Book  MATH  Google Scholar 

  2. Zelikin M. I., Optimal Control and Variational Calculus [Russian], Editorial URSS, Moscow 2004).

    MATH  Google Scholar 

  3. Zelikin M. I. and Borisov V. F., Theory of Chattering Control with Applications to Astronautics, Robotics, Economics, and Engineering, Birkhäuser, Boston, MA 1994).

    Book  MATH  Google Scholar 

  4. Bryant R. and Hsu L., “Rigidity of integral curves of rank 2 distributions,” Invent. Math., vol. 114, 435–461 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  5. Laumond J. P., “Controllability of a multibody mobile robot,” IEEE Trans. Robotics Automation, vol. 9, no. 6, 755–763 (1993).

    Article  Google Scholar 

  6. Liu W. and Sussmann H. J., “Shortest paths for sub-Riemannian metrics on rank-two distributions,” Mem. Amer. Math. Soc., vol. 118, no. 564, 1–104 (1996).

    MathSciNet  Google Scholar 

  7. Khesin B. and Lee P., “A nonholonomic Moser theorem and optimal transport,” J. Symplectic Geom., vol. 7, no. 4, 381–414 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  8. Villani C., Optimal Transport. Old and New, Springer-Verlag, Berlin 2009) (Grundlehren Math. Wiss.; vol. 338).

    Book  MATH  Google Scholar 

  9. Bloch A. M., Nonholonomic Mechanics and Control, Springer-Verlag, New York 2003).

    Book  Google Scholar 

  10. Montgomery R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Amer. Math. Soc., Providence 2002).

    MATH  Google Scholar 

  11. Accardi L., Pechen A., and Volovich I. V., “A stochastic golden rule and quantum Langevin equation for the low density limit,” Infinite Dimens. Analysis Quantum Probab. Relat. Topics, vol. 6, no. 3, 431–453 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  12. Khaneja N., Reiss T., and Kehlet C., “Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms,” J. Magn. Reson., vol. 172, 296–305 (2005).

    Article  Google Scholar 

  13. Nielsen N. C., Kehlet C., Glaser S. J., and Khaneja N., Optimal Control Methods in NMR Spectroscopy. Encyclopedia of Nuclear Magnetic Resonance, Wiley, Chichester, NY 2010).

    Google Scholar 

  14. Pechen A., “Engineering arbitrary pure and mixed quantum states,” Phys. Rev. A, vol. 84, no. 4, 042106 (2011).

    Article  Google Scholar 

  15. Udriste C. and Ciancio V., “Controllability of nonholonomic black holes systems,” Int. J. Geom. Methods Mod. Phys., vol. 10, no. 2, 1250097 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  16. Anastasiei M. and Vacaru S. I., “Nonholonomic black ring and solitonic solutions in Finsler and extra dimension gravity theories,” Int. J. Theor. Phys., vol. 49, no. 8, 1788–1804 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  17. Whiting J. K., Path Optimization Using Sub-Riemannian Manifolds with Applications to Astrodynamics, Ph. D. Thesis, Massachusetts Inst. Technology, Cambridge, MA 2011).

    Google Scholar 

  18. Hobson D. G. and Rogers L. C. G., “Complete models with stochastic volatility,” Math. Finance, vol. 8, no. 1, 27–48 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  19. Foschi P. and Pascucci A., “Path dependent volatility,” Decis. Econ. Finance, vol. 31, no. 1, 13–32 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  20. Field A., Heyes A., and Hess R. F., “Contour integration by the human visual system,” Vision Res., vol. 33, 173–193 (1993).

    Article  Google Scholar 

  21. Hoffman W. C., “The visual cortex is a contact bundle,” Appl. Math. Comput., vol. 32, 137–167 (1989).

    MathSciNet  MATH  Google Scholar 

  22. Hladky R. K. and Pauls S. D., “Minimal surfaces in the roto-translation group with applications to a neuro-biological image completion model,” J. Math. Imaging Vision, vol. 36, no. 1, 1–27 (2010).

    Article  MathSciNet  Google Scholar 

  23. Sarti A., Citti G., and Petitot J., “The symplectic structure of the primary visual cortex,” Biol. Cybern., vol. 98, no. 1, 33–48 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  24. Petitot J., Neurogéométrie de la vision. Modèles mathématiques et physiques des architectures fonctionelles, Les Éditions de l’École Polytechnique, Paris 2008).

    Google Scholar 

  25. Folland G. B. and Stein E. M., Hardy Spaces on Homogeneous Groups, Princeton Univ. Press, Princeton 1982).

    MATH  Google Scholar 

  26. Korányi A. and Reimann H. M., “Quasiconformal map**s on the Heisenberg group,” Invent. Math., vol. 80, 309–338 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  27. Korányi A. and Reimann H. M., “Foundations for the theory of quasiconformal map**s on the Heisenberg group,” Adv. Math., vol. 111, no. 1, 1–87 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  28. Warhurst B., “Contact and quasiconformal map**s on real model filiform groups,” Bull. Austral. Math. Soc., vol. 68, 329–343 (2003).

    Article  MathSciNet  MATH  Google Scholar 

  29. Warhurst B., “Jet spaces as nonrigid Carnot groups,” J. Lie Theory, vol. 15, 341–356 (2005).

    MathSciNet  MATH  Google Scholar 

  30. Pansu P., “Métriques de Carnot–Carathéodory et quasi-isométries des espaces symétriques de rang 1,” Ann. Math., vol. 129, 1–60 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  31. Vodop’yanov S. K. and Greshnov A. V., “On differentiability of map**s of Carnot–Carathéodory spaces,” Dokl. Math., vol. 389, no. 5, 592–596 (2003).

    MATH  Google Scholar 

  32. Vodopyanov S., “Geometry of Carnot–Carathéodory spaces and differentiability of map**s,” in: The Interaction of Analysis and Geometry. Contemporary Mathematics, Amer. Math. Soc., Providence, 2007, vol. 424, 247–301.

    Chapter  Google Scholar 

  33. Basalaev S. G. and Vodopyanov S. K., “Approximate differentiability of map**s of Carnot–Carathéodory spaces,” Eurasian Math. J., vol. 4, no. 2, 10–48 (2013).

    MathSciNet  MATH  Google Scholar 

  34. Karmanova M. B., “The graphs of Lipschitz functions and minimal surfaces on Carnot groups,” Sib. Math. J., vol. 53, no. 4, 672–690 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  35. Karmanova M. B., “Graph surfaces over three-dimensional Carnot–Carathéodory spaces,” Dokl. Math., vol. 92, no. 1, 439–442 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  36. Karmanova M. B., “Graph surfaces over three-dimensional Lie groups with sub-Riemannian structure,” Sib. Math. J., vol. 56, no. 6, 1080–1092 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  37. Karmanova M. B., “Graph surfaces of codimension two over three-dimensional Carnot–Carathéodory spaces,” Sib. Math. J. (to be published).

  38. Karmanova M. B., “Three-dimensional graph surfaces on five-dimensional Carnot–Carathéodory spaces,” Dokl. Akad. Nauk, vol. 468, no. 6, 614–617 (2016).

    MathSciNet  Google Scholar 

  39. Vodopyanov S. K., Integration by Lebesgue: http://math.nsc.ru/~matanalyse/Lebesgue.pdf.

  40. Bonfiglioli A., Lanconelli E., and Uguzzoni F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer-Verlag, Berlin and Heidelberg 2007).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. B. Karmanova.

Additional information

The author was supported by the Russian Foundation for Basic Research (Grant 16–31–60036–mol–a–dk).

Novosibirsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 58, No. 2, pp. 305–332, March–April, 2017; DOI: 10.17377/smzh.2017.58.206.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karmanova, M.B. The polynomial sub-Riemannian differentiability of some Hölder map**s of Carnot groups. Sib Math J 58, 232–254 (2017). https://doi.org/10.1134/S0037446617020069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446617020069

Keywords

Navigation