Log in

Saturated Vapor Composition and Volatility of Uranium and Some Other Metal Tetrachlorides (ThCl4, HfCl4, ZrCl4, TiCl4) from Their Molten Mixtures with Alkali Metal Chlorides

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The changes in the saturated vapor composition and the volatility of the components of molten mixtures of uranium and some other metal tetrachlorides (ThCl4, HfCl4, ZrCl4, TiCl4) with alkali metal chlorides as functions of the temperature, concentration and cationic composition of the melts are discussed using our experimental data and those obtained by other researchers, mainly employees of the Institute of High-Temperature Electrochemistry (Ural Branch, Russian Academy of Sciences). The dissolution of UCl4 and other tetrachlorides in molten alkali metal chlorides is accompanied by complex formation, which manifests itself as a sharp decrease in the volatility of the corresponding tetravalent metal chloride and its content in saturated vapors. The strength of complex chloride anions of polyvalent metals formed in the melts increases significantly with a decrease in their concentration, replacement of the solvent salt in the series from LiCl to CsCl, and decreasing temperature. As a result, the volatilities of UCl4, ThCl4, HfCl4, ZrCl4, and TiCl4 and the composition of vapors above the solutions in the ionic melts vary over broad ranges. According to the experimental data, hafnium, zirconium, and titanium tetrachlorides (especially TiCl4), which are much more volatile in the individual state, have higher volatilities and contents in the saturated vapors over solutions in molten alkali metal chlorides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. M. V. Smirnov, V. Ya. Kudyakov, A. B. Salyulev, V. E. Komarov, Yu. V. Posokhin, and V. K. Afonichkin, “Volatilities of saturated vapor components of UCl4–CsCl and UCl4–LiCl molten mixtures,” Radiokhimiya 21 (1), 18–21 (1979).

    CAS  Google Scholar 

  2. A. B. Salyulev, V. Ya. Kudyakov, and N. I. Moskalenko, “Volatilities of the components of the saturated vapors of UCl4 solutions in a molten equimolar NaCl–KCl mixture,” Russ. Metall. (Metally), No. 8, 992–997 (2021).

  3. A. B. Salyulev, V. Ya. Kudyakov, and N. I. Moskalenko, “Volatilities of saturated vapor components of UCl4–KCl and UCl4–NaCl molten mixtures,” Rasplavy, No. 5, 533–542 (2021).

    Google Scholar 

  4. A. B. Salyulev, V. Ya. Kudyakov, and N. I. Moskalenko, “Volatilities of saturated vapor components of UCl4–RbCl molten mixtures,” Rasplavy, No. 4, 338–349 (2022).

    Google Scholar 

  5. M. V. Smirnov and V. Ya. Kudyakov, “The saturation vapor pressure and decomposition potential of ThCl4 solutions in molten alkali chlorides,” Electrochim. Acta 29 (1), 63–68 (1984).

    Article  CAS  Google Scholar 

  6. M. V. Smirnov, A. B. Salyulev, and V. Ya. Kudyakov, “Thermodynamic properties and decomposition potential of HfCl4 solutions in molten alkali chlorides and their mixtures,” Electrochim. Acta 29 (8), 1087–1100 (1984).

    Article  CAS  Google Scholar 

  7. A. B. Salyulev, V. Ya. Kudyakov, M. V. Smirnov, and N. I. Moskalenko, “Separation of hafnium and zirconium in solutions of their tetrachlorides in molten alkali metal chlorides,” Zh. Prikl. Khim. 57 (8), 1847–1850 (1984).

    CAS  Google Scholar 

  8. S. N. Flengas and P. Pint, “Potential chloride electrolytes for recovering the metals Ti, Zr, and Hf by fused salt electrolysis,” Canad. Metallurg. Quart. 8 (2), 151–156 (1969).

    Article  CAS  Google Scholar 

  9. S. N. Flengas and A. Block-Bolten, “Solubilities of reactive gases in molten salts,” in Advances in Molten Salt Chemistry. Ed. by J. Braunstein, G. Mamantov, and G. P. Smith, (Plenum Press, New York, 1973), Vol. 2, pp. 27–81.

    Google Scholar 

  10. M. V. Smirnov, V. S. Maksimov, A. P. Khaimenov, “Interaction of gaseous titanium tetrachloride with molten alkali metal chlorides,” Zh. Neorg. Khim. 11 (8), 1765–1771 (1966).

    CAS  Google Scholar 

  11. A. B. Salyulev and V. Ya. Kudyakov, “PT diagrams of CsCl–Cs2TiCl6 and RbCl–Rb2TiCl6 systems,” Rasplavy, No. 4, 95–98 (1991).

    Google Scholar 

  12. S. M. Shugurov, “Thermal stability of inorganic associates in the gas phase,” Doct. Sci. (Chem.) Dissertation, St. Petersburg, 2018.

  13. J. J. Katz and E. Rabinowitch, The Chemistry of Uranium: The Element, Its Binary and Related Compounds (McGraw-Hill, New York, 1951), Part 1.

  14. D. Brown, The Halides of the Lanthanides and Actinides (Wiley, London, 1968).

    Google Scholar 

  15. A. V. Suvorov, Thermodynamic Chemistry of the Vapor State (Khimiya, Leningrad, 1970).

    Google Scholar 

  16. A. Roine, HSC Chemistry 7.0 Thermochemical Database (Outokumpu Research Oy, Finland, 2009).

    Google Scholar 

  17. V. L. Mironov and B. P. Burylev, “Saturated vapor pressure of individual chlorides and their binary mixtures,” in Proceedings of All-Union Seminar on Progress in Thermodynamics of Melts (Krasnodar. Politekhn. Inst., Krasnodar, 1976), pp. 25–84.

  18. Z. Singh, R. Prasad, V. Venugopal, and D. D. Sood, “The vaporization thermodynamics of uranium tetrachloride,” J. Chem. Thermodynam. 10, 129–124 (1978).

    Article  CAS  Google Scholar 

  19. G. I. Novikov and F. G. Gavryuchenkov, “Complex halides in vapors at high temperatures,” Usp. Khim. 36 (3), 399–413 (1967).

    Article  Google Scholar 

  20. M. Binnewies and H. Schäfer, “Gasförmige Halogenidkomplexe und ihre Stabilität,” Z. Anorg. Allg. Chem. 407 (3), 327–344 (1974).

    Article  CAS  Google Scholar 

  21. S. A. Arthers and I. R. Beattie, “The vibrational spectra of some tetrachlorides in rare gas matrices with particular reference to the molecular shapes of ThCl4 and UCl4,” J. Chem. Soc., Dalton Trans., No. 23, 819–826 (1984).

  22. B. Li, S. Dai, and D. Jiang, “First principles dynamic simulations of UCln–NaCl (n = 3, 4) molten salts,” ACS Appl. Energy Mater. 2 (3), 2122–2128 (2019).

    Article  CAS  Google Scholar 

  23. R. D. Shannon, “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  24. M. V. Smirnov, Electrode Potentials in Molten Chlorides (Nauka, Moscow, 1973).

    Google Scholar 

  25. A. G. Morachevskii and I. B. Sladkov, Physicochemical Properties of Molecular Inorganic Compounds (Experimental Data and Calculation Methods): A Handbook (Khimiya, St. Petersburg, 1996).

    Google Scholar 

  26. I. A. Sheka and K. F. Karlysheva, Chemistry of Hafnium (Naukova Dumka, Kiev, 1972).

    Google Scholar 

  27. C. L. Yaws, Thermophysical Properties of Chemicals and Hydrocarbons (William Andrew, Norwich, 2008).

    Google Scholar 

  28. W. Fischer, R. Gewehr, and H. Wingchen, “Über thermische Eigenschaften von Halogeniden. 12. Übereine neue Anordnung zur Dampfdruckmessung und über die Schmelzpunkte und Sättigungsdrucke von Skandium-, Thorium- und Hafniumhalogeniden,” Z. Anorg. Allg. Chem. 242 (2), 161–187 (1939).

    Article  CAS  Google Scholar 

  29. M. V. Smirnov, V. Ya. Kudyakov, V. E. Komarov, and A. B. Salyulev, “Equilibrium electrode U(IV)–U(III) and redox U(IV)–U(III) potentials in a medium of molten alkali metal chlorides,” Elektrokhimiya 15 (2), 269–272 (1979).

    CAS  Google Scholar 

  30. A. B. Salyulev, I. D. Zakir’yanova, and E. G. Vov-kotrub, “Investigation of reaction products of ZrCl4 and HfCl4 with alkali metal chlorides and phosphorus pentachloride by Raman spectroscopy,” Rasplavy, No. 5, 53–61 (2012).

    Google Scholar 

  31. G. M. Photiadis and G. N. Papatheodorou, “Co-ordination of thorium(IV) in molten alkali-metal chlorides and the structure of liquid and glassy thorium(IV) chloride,” J. Chem. Soc., Dalton Trans., No. 20, 3541–3548 (1999).

  32. G. J. Kipouros, J. H. Flint, and D. R. Sadoway, “Raman spectroscopic investigation of alkali-metal hexachloro compounds of refractory metals,” Inorg. Chem. 24 (23), 3881–3884 (1985).

    Article  CAS  Google Scholar 

  33. M. H. Brooker and G. N. Papatheodorou, “Vibrational spectroscopy of molten salts and related glasses and vapors,” in Advances in Molten Salt Chemistry, Ed. by G. Mamantov (Elsevier, Amsterdam, 1983), Vol. 5, pp. 26–184.

    Google Scholar 

  34. G. M. Photiadis and G. N. Papatheodorou, “Vibrational modes and structure of liquid and gaseous zirconium tetrachloride and of molten ZrCl4–CsCl mixtures,” J. Chem. Soc., Dalton Trans., No. 6, 981–990 (1998).

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Salyulev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salyulev, A.B., Kudyakov, V.Y. Saturated Vapor Composition and Volatility of Uranium and Some Other Metal Tetrachlorides (ThCl4, HfCl4, ZrCl4, TiCl4) from Their Molten Mixtures with Alkali Metal Chlorides. Russ. Metall. 2023, 986–992 (2023). https://doi.org/10.1134/S0036029523080232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523080232

Keywords:

Navigation