Log in

Capacitance and Impedance of an Iridium Electrode in Molten Alkali Metal Chlorides

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—The capacitance of the iridium electrode is studied by electrochemical impedance spectroscopy as a function of the main physical and chemical parametersnamely, electrical potential, temperature, and alkali cation radius. The influence of the signal frequency used in ac electrochemical methods on the capacitance and shape of a capacitance curve is also tested. Data on the capacitance of the iridium electrode are obtained in molten sodium, potassium, and cesium chlorides in a temperature range of 1093–1123 K and the ac signal frequency range from 3 × 100 to 3 ×104 Hz in the entire available electrical polarization range. The detected capacitance curves have two main minima with a maximum between them. One of the minima (cathodic) is identified as the classical potential of capacitance minimum. A decrease in the signal frequency and the experiment temperature and an increase in the cation radius in the NaCl–KCl–CsCl order result in the appearance of one or two additional minima in the potential range between the main minima. The depth of the intermediate minima increases and their potential shifts to the positive direction with an increase in the radius of the alkali metal cation of the salt electrolyte. The capacitances of the electrical double layer (EDL) and the adsorption capacitances are calculated by the method of equivalent electrical circuits. One of the additional minima obtained by the direct measurement of the potential dependence of the electrode capacitance at a high frequency corresponds to the calculated capacitance of the EDL. The second additional minimum having formed at a low frequency is reproduced in the adsorption capacitance calculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. Catalysis in Industry, Ed. by B. Leach (Mir, Moscow, 1986).

  2. J. Zheng, W. Sheng, Z. Zhuang, B. Xu, and Y. Yan, “Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy,” Sci. Adv. 2, e1501602 (2016).

    Article  Google Scholar 

  3. E. Rasten, G. Hagen, and R. Tunold, “Electrocatalysis in water electrolysis with solid polymer electrolyte,” Electrochim. Acta 48, 3945–3952 (2003).

    Article  CAS  Google Scholar 

  4. Y. Huang, K. Wu, R. Hao, et al., “Iridium do** boosting the electrochemical performance of lithium-rich cathodes for Li-ion batteries,” ACS Appl. Energy Mater. 4 (3), 2489–2495 (2021).

    Article  CAS  Google Scholar 

  5. F. Lin, B. F. Bachman, and Sh. W. Boettcher, “Impact of electrocatalyst activity and ion permeability on water-splitting photoanodes,” J. Phys. Chem. Lett. 6, 2427–2433 (2015).

    Article  CAS  Google Scholar 

  6. S. Bause, M. Decker, F. Gerlach, et al., “Development of an iridium-based pH sensor for bioanalytical applications,” J. Solid State Electrochem. 22, 51–60 (2018).

    Article  CAS  Google Scholar 

  7. T. Audichon, E. Mayousse, S. Morisset, et al., “Electroactivity of RuO2–IrO2 mixed nanocatalysts toward the oxygen evolution reaction in a water electrolyzer supplied by a solar profile,” Int. J. Hydrogen Energy 39, 16785–16796 (2014).

    Article  CAS  Google Scholar 

  8. A. Papaderakis, D. Tsiplakides, S. Balomenou, et al., “Electrochemical impedance studies of IrO2 catalysts for oxygen evolution,” J. Electroanal. Chem. 757, 216–224 (2015).

    Article  CAS  Google Scholar 

  9. Isotopes: Properties, Production, and Application, Ed. by Yu. Baranov (FIZMATLIT, Moscow, 2005).

    Google Scholar 

  10. W. Wu, Z. Chen, and L. Wang, “Oxidation behavior of multilayer iridium coating on niobium substrate,” Prot. Met. Phys. Chem. Surf. 51, 607–612 (2015).

    Article  CAS  Google Scholar 

  11. L. Zhu, S. Bai, H. Zhang, et al., “Long-term high-temperature oxidation of iridium coated rhenium by electrical resistance heating method,” Int. J. Refract. Met. Hard Mater. 44, 42–48 (2014).

    Article  CAS  Google Scholar 

  12. Y. Huang, S. Bai, H. Zhang, et al., “Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air,” Appl. Surf. Sci. 328, 436–443 (2015).

    Article  CAS  Google Scholar 

  13. Y. Huang, S. Bai, H. Zhang, et al., “Oxidation of iridium coatings on rhenium substrates at ultrahigh temperature in stagnant air: Its failure mechanism and life model,” Surf. Coat. Technol. 288, 52–61 (2016).

    Article  CAS  Google Scholar 

  14. D. Toenshoff, R. Lanam, J. Ragaini, et al., “Iridium coated rhenium rocket chambers produced by electroforming,” in Proceedings of the 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibition (Las Vegas, 2000), pp. AIAA 2000–3166.

  15. J. Mefford, X. Rong, A. Abakumov, et al., “Water electrolysis on La1–xSrxCoO3–δ perovskite electrocatalysts,” Nat. Commun. 7, 11053 (2016).

    Article  CAS  Google Scholar 

  16. M. Bernt, A. Siebel, and H. A. Gasteiger, “Analysis of voltage losses in PEM water electrolyzers with low platinum group metal loadings,” J. Electrochem. Soc. 165, F305–F314 (2018).

    Article  CAS  Google Scholar 

  17. P. Millet, N. Mbemba, S. A. Grigoriev, et al., “Electrochemical performances of PEM water electrolysis cells and perspectives,” Int. J. Hydrogen Energy. 36, 4134–4142 (2011).

    Article  CAS  Google Scholar 

  18. M. Bernt, A. Hartig-Weiß, M. F. Tovini, et al., “Current challenges in catalyst development for PEM water electrolyzers,” Chemie-Ingenieur-Technik. 92, 31–39 (2020).

    Article  CAS  Google Scholar 

  19. A. V. Isakov, A. P. Apisarov, and A. O. Nikitina, “Electrowinning and annealing of Ir–Re–Ir material,” Nonferr. Met. 11, 55–60 (2017).

    Google Scholar 

  20. N. A. Saltykova, L. S. Pechorskaya, and A. N. Baraboshkin, “Salt passivation during anodic dissolution of iridium in chloride melts,” Elektrokhimiya 22, 579–584 (1986).

    CAS  Google Scholar 

  21. R. Weiland, D. F. Lupton, B. Fischer, et al., “High-temperature mechanical properties of the platinum group metals,” Platinum Met. Rev. 50 (4), 158–170 (2006).

    Article  CAS  Google Scholar 

  22. S. I. Dokashenko, V. P. Stepanov, and E. V. Kirillova, “Impedance of the interface between polycrystalline gold and molten potassium chloride,” Rasplavy 4, 47–61 (2004).

    Google Scholar 

  23. Iridium: Compounds Information. https://www.webelements.com/iridium/compounds.html.

  24. V. P. Stepanov, S. I. Dokashenko, and E. V. Kirillova, “Frequency dependence of potentials of minimum capacitance for electrodes of copper subgroup metals in alkali halide melts,” Russ. J. Electrochem. 48, 1005–1010 (2012).

    Article  CAS  Google Scholar 

  25. E. V. Kirillova, “Capacitance and impedance of rhenium in molten alkali metal chlorides,” Russ. Metall. (Metally), No. 2, 123–127 (2018).

Download references

Funding

This work was carried out in terms of state assignment no. AAAA-A17-117101140022-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Kirillova.

Ethics declarations

The authors of this work declare that she has no conflicts of interest.

Additional information

Translated by E. Yablonskaya

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirillova, E.V. Capacitance and Impedance of an Iridium Electrode in Molten Alkali Metal Chlorides. Russ. Metall. 2023, 945–950 (2023). https://doi.org/10.1134/S0036029523080128

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523080128

Navigation