Log in

Statistical Microhardness Distribution Parameters and Their Relations with the Characteristics of Local Deformation and the Attenuation Coefficient of Ultrasonic Waves

  • DIAGNOSTICS AND MECHANICAL TEST TECHNIQUES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—The results of the study of low-carbon and structural alloyed steels using microhardness, attenuation of ultrasonic waves, and local grain deformation measurements are presented. To assess the state of the studied material, it is proposed to use statistical parameters of cumulative distributions of microhardness measurements. A novel approach for statistical evaluation of the state of material using quantile distributions of microhardness is developed. The comparison between sigmoid and quantile distributions was made, and reduction of area the relationships between statistical parameters and attenuation coefficient of ultrasonic waves, relative reduction of area and grain aspect ratio were obtained. The advantage of quantile distributions over sigmoid ones was demonstrated by higher sensitivity to the change of mechanical properties of material and lower number of coefficients to determine. The proposed method of statistical estimation of the mechanical properties makes it possible to estimate the state of stress in a material during operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. I. N. Ermolov and Yu. V. Lange, Non-Destructive Testing: A Handbook. Vol. 3. Ultrasonic Inspection, Ed. by V. V. Klyuev (Mashinostroenie, Moscow, 2004).

  2. V. M. Zuev, Heat Treatment of Metals (Vysshaya Shkola, Moscow, 1986).

    Google Scholar 

  3. A. N. Romanov and N. I. Filimonova, “Structural and deformation heterogeneity of structural metallic materials,” Informatiz. Svyaz’, No. 4, 48–54 (2009).

  4. E. E. Zorin, “Development of a method for rapid diagnostics and prediction of the residual life based on detecting accumulated metal damage to a structure during long-term loading,” Izv. Mosk. Gos. Tekh. Univ. MAMI 4 (1(15)), 142–148 (2013).

    Google Scholar 

  5. V. M. Matyunin, Rapid Diagnostics of the Mechanical Properties of Structural Materials (Izd. Dom MEI, Moscow, 2006).

    Google Scholar 

  6. L. R. Botvina, N. A. Zharkova, M. R. Tyutin, A. P. Soldatenkov, Yu. A. Demina, and V. P. Levin, “Development of plastic zones and damage for various types of loading,” Zavod. Lab. 79 (5), 45–56 (2013).

    Google Scholar 

  7. L. R. Botvina, A. P. Soldatenkov, V. P. Levin, M. R. Tyutin, Yu. A. Demina, T. B. Petersen, A. A. Dubov, and N. A. Semashko, “Estimation of the characteristics of low-carbon steel damage by physical methods,” Metally, No. 1, 27–39 (2016).

    Google Scholar 

  8. M. Yu. Simonov, M. N. Georgiev, Yu. N. Simonov, and G. S. Shaimanov, “Estimation of the plastic deformation zone size in high-ductility materials after dynamic systematic microhardness measurement tests,” Metalloved. Term. Obrab. Met., No. 11, 40–45 (2012).

  9. T. V. Tetyueva, L. R. Botvina, and S. A. Krupnin, “Law of the damage of low-alloy steels in corrosive hydrogen sulfide–containing media,” Fiz.-Khim. Mekh. Razr., No. 2, 27–33 (1990).

  10. A. A. Botaki, V. L. Ul’yanov, and A. V. Sharko, Ultrasonic Control of the Strength Properties of Structural Materials (Mashinostroenie, Moscow, 1983).

    Google Scholar 

  11. A. Mkaddem, F. Gassara, and R. Hambli, “A new procedure using the microhardness technique for sheet material damage characterization,” J. Mater. Proc. Technol. 178, 111–118 (2006).

    Article  Google Scholar 

  12. L. R. Botvina, M. R. Tyutin, T. B. Petersen, V. P. Levin, A. P. Soldatenkov, and D. V. Prosvirnin, “Residual strength, microhardness, and acoustic properties of cyclically deformed low-carbon steel,” Probl. Mashinostr. Nadezhn. Mashin., No. 6, 44–53 (2018).

  13. T. H. Pham, Q. M. Phan, and S. E. Kim, “Identification of the plastic properties of structural steel using spherical indentation,” Mater. Sci. Eng., A 711, 44–61 (2018).

    Article  CAS  Google Scholar 

  14. M. Q. Le, “Material characterization by instrumented spherical indentation,” Mech. Mater. 46, 42–56 (2012).

    Article  Google Scholar 

  15. A. A. Lebedev, S. A. Nedoseka, N. R. Muzyka, and N. L. Volchek, “Estimation of the state of pipe metal after long-term operation in the system of main gas pipelines,” Tekh. Diagnost. Nerazr. Kontrol’, No. 2, 3–8 (2003).

  16. L. R. Botvina and Yu. A. Demina, “Relation between the parameters of statistical distributions of cyclic durability and dynamic fracture toughness and fracture mechanisms,” Dokl. Akad. Nauk 431 (4), 475–478 (2010).

    Google Scholar 

  17. E. Gumbel’, Statistics of Extreme Values (Mir, Moscow, 1965).

  18. A. A. Lebedev, N. R. Muzyka, and N. L. Volchek, “Determination of the damage to structural materials using the scatter parameters of the hardness characteristics,” Probl. Prochn., No. 4, 5–11 (2002).

  19. I. N. Bogachev, A. A. Vainshtein, and S. D. Volkov, Introduction to Statistical Physical Metallurgy (Metallurgiya, Moscow, 1982).

    Google Scholar 

  20. J. Lemaitre, J. Dufailly, and R. Billardon, “Evaluation de l’endom magement par mesures de microdureté,” Comptes Rendus de l’Académie des Sciences. Série 2: Méchanique, Physique, Chimie, Sciences de L’univers, Sciences de la Terre 304 (12), 601–604 (1987).

    Google Scholar 

  21. L. R. Botvina, V. P. Levin, A. P. Soldatenkov, and V. Trunova, “Periodical changes in microhardness and physical properties of the low-carbon steel at cyclic loading,” in Proceedings of International Conference on Structural Integrity and Durability—ICSID 2017 (Dubrovnik, 2017), pp. 85–86.

  22. L. R. Botvina, V. P. Levin, M. R. Tyutin, A. P. Soldatenkov, Yu. A. Demina, V. V. Trunova, N. R. Kuzelev, and A. G. Efimov, “Evaluation of cyclic damage of structural steels by magnetic NDT methods,” in Proceedings of 14th International Conference on Fracture—ICF14 (Rhodes, 2017), pp. 1207–1209.

  23. T. G. Alvarez-Arenas, E. R. F. de Sarabia, and J. A. Gallego-Juárez, “Ultrasonic evaluation of creep damage in steel,” Ultrasonics 31 (3), 155–159 (1993).

    Article  CAS  Google Scholar 

  24. J. A. Ogilvy, “A model for the effects of inclusions on ultrasonic inspection,” Ultrasonics 31 (4), 219–228 (1993).

    Article  Google Scholar 

  25. L. L. Rokhlin, Acoustic Properties of Light Alloys (Nauka, Moscow, 1974).

    Google Scholar 

  26. R. Truell, Ch. Elbaum, and B. Chick, Ultrasonic Methods in Solid State Physics (Mir, Moscow, 1972).

  27. L. R. Botvina, Fracture. Kinetics, Mechanisms, and General Laws (Nauka, Moscow, 2008).

    Google Scholar 

  28. M. Ohashi, “Quantitative metallographic study for evaluation of fracture strain,” Exp. Mech. 38 (1), 13–17 (1998).

    Article  CAS  Google Scholar 

  29. G. A. Smirnov-Alyaev, Resistance of Materials to Plastic Deformation (Mashinostroenie, Leningrad, 1978).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.P. Levin for assistance in evaluating the acoustic properties of the studied materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Larionova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Author

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionova, A.V., Botvina, L.R. Statistical Microhardness Distribution Parameters and Their Relations with the Characteristics of Local Deformation and the Attenuation Coefficient of Ultrasonic Waves. Russ. Metall. 2023, 533–540 (2023). https://doi.org/10.1134/S0036029523040134

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523040134

Navigation