Log in

Strength of a Fiber-Reinforced Composite Material with an Anisotropic Matrix

  • DEFORMATION AND FRACTURE MECHANICS
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract—A mathematical model has been developed to calculate the force of uniaxial tension of a fiber-reinforced composite material (FCM) with an anisotropic matrix when fibers are destroyed. The proposed model takes into account the crystallographic texture of the matrix material and the direction of fiber laying, which allows us to formulate requirements for the texture improving the strength of FCM. The performed analysis has demonstrated that the crystallographic orientations of deformation type provide higher strength properties of FCM in comparison with those of recrystallization type. The highest increase in the strength is observed upon reinforcement by fibers at an angle of about 45° to the rolling direction if the structure of the sheet is comprised of orientations of deformation type. For the orientations of recrystallization type, reinforcement should be performed in the rolling direction ({100}〈001〉, {110}〈001〉); for the orientation {100}〈001〉, it should be additionally performed in the transverse direction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. E. N. Kablov, “Materials of new generation and digital technologies of their reprocessing,” Vestn. RAN 90 (4), 331–334 (2020).

    Google Scholar 

  2. M. Balog, K. Petera, D. Jiric, O. Bajana, J. Krajcovic, and M. Drienovsky, “Industrially fabricated in-situ Al–AlN metal matrix composites (part B): The mechanical, creep, and thermal properties,” J. Alloys Compd. 909, 164720 (2022).

    Article  CAS  Google Scholar 

  3. S. Tang, R. Ummethala, C. Suryanarayana, J. Eckert, K.G. Prashanth, and Z. Wang, “Additive manufacturing of aluminum-based metal matrix composites—a review,” Adv. Eng. Mater. 23 (7), 2100053 (2021).

    Article  CAS  Google Scholar 

  4. K. K. Chawla, Composite Materials: Science and Engineering (Springer, 2019).

    Book  Google Scholar 

  5. M. G. Akhil, A. G. Arsha, V. Manoj, T. P. D. Rajan, B. C. Pai, P. Huber, and T. Gries, “Metal fiber reinforced composites,” in Fiber Reinforced Composites (Woodhead Publishing, 2021), pp. 479–513.

  6. V. Khanna, V. Kumar, and S. A. Bansal, “Aluminium-carbon fibre metal matrix composites: a review,” IOP Conf. Ser.: Mater. Sci. Eng. 1033 (1), 012057 (2021).

  7. A. J. M. Spencer, “A theory of the failure of ductile materials reinforced by elastic fibers,” Int. J. Mech. Sci. 7, 197–209 (1965).

    Article  Google Scholar 

  8. J. Wang, Y. **ao, and M. Kawai, “Parameter identification problem in one-parameter plasticity model for fibrous composites,” Adv. Comp. Mater. 28, 29–51 (2019).

    Article  Google Scholar 

  9. C. Cheng, and N. Aravas, “Creep elastic of metal-matrix composites with fibers – Part I: Continuous aligned fibers,” Int. J. Solids Struct. 34, 4147–4171 (1997).

    Article  Google Scholar 

  10. H. Naji, S.M. Zebarjad, and S.A. Sajjadi, “The effects of volume percent and aspect ratio of carbon fiber on fracture toughness of reinforced aluminum matrix composites,” Mater. Sci. Eng., A 486, 413–420 (2008).

    Article  Google Scholar 

  11. I. T. Lee, Y. Q. Wang, Y. Ochi, S. I. Bae, K. S. Han, and J. I. Song, “Effect of short fiber reinforcement on the fracture toughness of metal matrix composites,” Adv. Comp. Mater. 19, 41–53 (2010).

    Article  Google Scholar 

  12. Q. Sun, Y. Yang, X. Luo, R. Zhang, B. Huang, and C. Xue, “Interfacial fracture toughness of fiber reinforced titanium matrix composites by push out test,” Rare Metal Mater. Eng. 46 (10), 2794–2800 (2017).

    Article  CAS  Google Scholar 

  13. A. Caporale, R. Luciano, and E. Sacco, “Micromechanical analysis of interfacial debonding in unidirectional fiber-reinforced composites,” Comp. Struct. 84, 2200–2211 (2006).

    Article  Google Scholar 

  14. S. Li and S. Ghosh, “Modeling interfacial debonding and matrix cracking in fiber reinforced composites by the extended Voronoi cell FEM,” Finite Elem. Analys. Design 43, 397–410 (2007).

    Article  Google Scholar 

  15. B. Sabuncuoglu and S. Lomov, “Micro-scale numerical study of fiber/matrix debonding in steel fiber composites,” J. Eng. Fiber. Fabrics 15 (2020).

  16. W. Zhu, J. Liu, and X. Wei, “A multiscale model for the prediction of ballistic performance of fiber-reinforced composites,” Int. J. Impact Eng. 154, 103889 (2021).

    Article  Google Scholar 

  17. Z. P. Luo and C. Y. Sun, “Effect of the interfacial bonding status on the tensile fracture characteristics of a boron–fiber-reinforced aluminum composite,” Mater. Character. 50, 51–58 (2003).

    Article  CAS  Google Scholar 

  18. S. Fukumoto, A. Hirose, and K. F. Kobayashi, “Evaluation of the strength of diffusion bonded joints in continuous fiber reinforced metal matrix composites,” J. Mater. Proc. Technol. 68, 184–191 (1997).

    Article  Google Scholar 

  19. S. Alexandrov, Y. Erisov, and F. Grechnikov, “Effect of the yield criterion of matrix on the brittle fracture of fibres in uniaxial tension of composites,” Adv. Mater. Sci. Eng. 2016, 3746161 (2016).

    Article  Google Scholar 

  20. Y. A. Erisov, F. V. Grechnikov, S. V. Surudin, “Yield function of the ortho-tropic material considering the crystallographic texture,” Struct. Eng. Mech. 58 (4), 677–687 (2016).

    Article  Google Scholar 

  21. Y. Erisov, S. Surudin, F. Grechnikov, and E. Lyamina, “An exact axisymmetric solution in anisotropic plasticity,” Symmetry 13 (5), 825 (2021).

    Article  Google Scholar 

  22. Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology. New Series. Group III: Crystal and Solid State Physics. Vol. 1: Elastic, Piezoelectric, Piezooptic and Electrooptic Constants of Crystals (Springer, Berlin, 1966).

Download references

Funding

This work was supported by the Russian Science Foundation, project no. 20-79-10340.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Erisov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by I. Moshkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erisov, Y.A., Aleksandrov, S.E., Petrov, I.N. et al. Strength of a Fiber-Reinforced Composite Material with an Anisotropic Matrix. Russ. Metall. 2023, 383–388 (2023). https://doi.org/10.1134/S0036029523040080

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523040080

Navigation