Log in

Solidification of Titanium Carbide from the Iron Triad Melts

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The probability of solidifying titanium carbide from iron–carbon melts is estimated thermodynamically. The Gibbs energy of the corresponding chemical reaction is chosen as a solidification criterion. The effect of the melt composition and temperature on the formation of titanium carbide particles is determined. Alloying of castings of alloys based on the iron-group metals with titanium carbide, which forms in a melt as a result of self-propagating high-temperature synthesis between master alloy components (titanium, black carbon), enables one to form dispersed 4–8-μm TiC particles, which increases the microhardness of the materials by 20–30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. A. Chernyshev and A. I. Evstigneev, Theoretical Fundamentals of Foundry. Theory of Casting Formation (Mashinostroenie, Moscow, 2015).

    Google Scholar 

  2. V. A. Efimov, G. A. Anisovich, V. N. Babich, et al., Special Casting Methods, A Handdook. Ed. V. A. Efimov (Mashinostroenie, Moscow, 1991).

    Google Scholar 

  3. G. I. Sil’man, L. G. Serpik, S. S. Gurin, and N. V. Dmitrieva, “Method of manufacturing composite cast iron castings,” RF Patent 2207218, 2003.

  4. O. S. Yakushev, V. I. Lad’yanov, E. V. Kuz’minykh, S. V. Tanygin, P. G. Ovcharenko, I. V. Tanygin, M. I. Mokrushina, and V. A. Karev, “Method of manufacturing composite metallic alloy containing titanium carbide,” RF Patent 2739898, 2020.

  5. Haimin Ding, **angfa Liu, Lina Yu, and Guoqun Zhao, “The influence of forming processes on the distribution andmorphologies of TiC in Al–Ti–C master alloys,” Scripta Mater. 57, 575–578 (2007). https://doi.org/10.1016/j.scriptamat.2007.06.028

    Article  CAS  Google Scholar 

  6. P. G. Ovcharenko, A. Yu. Leshchev, K. E. Chekmyshev, and T. M. Makhneva, “Formation of titanium boride in surface layer of castings from iron–carbon alloys,” Russ. Met. (Metally), No. 6, 88–92 (2017).

  7. D. S. Gowtam, M. Ziyauddin, M. Mohape, S. S. Sontakke, V. P. Deshmukh, and A. K. Shan, “In situ TiC-reinforced austenitic steel composite by self-propagating high-temperature synthesis,” Int. J. Self-Propagating High-Temperature Synthesis 16 (2), 70–78 (2007). https://doi.org/10.3103/S1061386207020033

    Article  CAS  Google Scholar 

  8. A. R. Luts and A. G. Makarenko, Self-Propagating High-Temperature Synthesis of Aluminum Alloys (SamGTU, Samara, 2008).

  9. Y. Birol, “Grain refining efficiently of Al–Ti–C alloys,” J. Alloys and Compd. 422, 128–131 (2006). https://doi.org//10.1016/j.jallcom.2005.11.059

    Article  CAS  Google Scholar 

  10. E. G. Kandalova, V. I. Nikitin, A. T. Makarenko, and Li Pytsze, “In situ technologies of production of Al–TiC composite,” Vestn. SamGTU: Tekhn Nauki, No. 32, 95–101 (2005).

    Google Scholar 

  11. **angfa Liu, Zhenqing Wang, Zuogui Zhang, and **ufang Bian, “The relationship between microstructure and refining performance of Al–Ti–C master alloys,” Mater. Sci. Eng. A 332, 70–74 (2002). https://doi.org/10.1016/S0921-5093(01)01751-8

    Article  Google Scholar 

  12. A. V. Panteleeva and R. M. Nikonova, “Modification of aluminum with strengthening phases TiB2 and TiC by the SHS method in melt,” Khim. Fiz. Mesoscop. 21 (1), 65–69 (2019).

    CAS  Google Scholar 

  13. S. S. Kiparisov, Yu. V. Levinskii, and A. P. Petrov, Titanium Carbide: Production, Properties, Application (Metallurgiya, Moscow, 1987).

    Google Scholar 

  14. Yu. Z. Babaskin, Structure and Properties of As-Cast Steel (Naukova Demka, Kyiv, 1980).

    Google Scholar 

  15. A. P. Amosov, A. R. Samboruk, I. V. Yatsenko, and V. V. Yatsenko, “Application of the self-propagating high-temperature synthesis for production of composite ceramic-metallic powders based on titanium and iron carbides,” Vestn. Perm. Nats. Issled. Politekh. Univer. Mashinostroenie, Materialoved. 20 (4), 5–14 (2018).

    Google Scholar 

  16. Cast Iron: A Handbook, Ed. by A. D. Sherman and A. A. Zhukov (Metallurgiya, Moscow, 1991).

    Google Scholar 

  17. M. E. Garber, Wear-Resistant White Cast Irons: Properties, Structure, Technology, and Operation (Mashinostroenie, Moscow, 2010).

    Google Scholar 

  18. Yu. I. Rivlin, M. A. Korotkov, and V. N. Chernobyl’skii, Metals and Their Substitutes (Metallurgiya, Moscow, 1973).

    Google Scholar 

  19. I. S. Kulikov, Deoxidization of Metals (Metallurgiya, Moscow, 1975).

    Google Scholar 

  20. E. A. Kazachkov, Calculations on the Theory of Metallurgical Processes: Textbook for Universities (Metallurgiya, Moscow, 1988).

    Google Scholar 

  21. V. A. Grigorian, A. Ya. Stomakhin, A. G. Ponamarenko et al., Physicochemical Calculations of Electric Steelmaking Processes (Metallurgiya, Moscow, 1989).

    Google Scholar 

  22. G. K. Sigworth and J. F. Elliot, “The thermodynamics of liquid dilute iron alloys,” Metal Sci. J. 8 (9), 298–310 (1974). https://doi.org/10.1179/msc.1974.S.1.298

    Article  CAS  Google Scholar 

  23. Yu. P. Snitko, Yu. N. Surovyi, and N. P. Lyakishev, Doklady AN SSSR, 268 (5), 115–117 (1983).

    Google Scholar 

  24. P. G. Ovcharenko, V. I. Lad’yanov, and K. E. Chekmyshev, “Thermodynamic estimations of the solidification of borides and carbides from boron-containing iron–carbon melts,” Russ. Met. (Metally), No. 11, 1320–1325 (2020).

  25. A. S. Zubchenko, M. M. Koloskov, Yu. V. Kashirskii, et al., Steel and Alloy Grade Guide, Ed. by A. S. Zubchenko (Mashinostroenie, Moscow, 2003).

    Google Scholar 

  26. O. A. Bannykh, P. B. Budberg, A. P. Alisova, et al., Phase Diagrams of Binary and Multicomponent Iron-Based Systems: A Handbook (Metallurgiya, Moscow, 1988).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The studies were carried out using equipment of the Collective Use Center “Center of physical and physicochemical methods of analysis, studying the properties and characteristics of surface, nanostructures, materials, and parts” of the Udmurt Federal Research Center, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. G. Ovcharenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovcharenko, P.G., Chekmyshev, K.E., Mokrushina, M.I. et al. Solidification of Titanium Carbide from the Iron Triad Melts. Russ. Metall. 2023, 39–45 (2023). https://doi.org/10.1134/S0036029523010093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523010093

Keywords:

Navigation