Log in

Self-Diffusion Coefficient of Liquid Magnesium near the Melting Temperature

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Multicomponent aluminum-based alloys are important in various industries. The percentage of the base component with various impurities and alloying additions in such alloys plays a fundamental role in achieving the required properties of the final product. For our research, information on the diffusion properties of alloying components, such as Si, Cu, Mg, Sc, Ca, Ti, Zr, and Cr, in the liquid state is useful. Unfortunately, for these elements (except for Cu), even in the pure form, the required information in the literature is insufficient. In this work, the self-diffusion coefficient of liquid Mg is chosen as an object of study. The calculations are carried out, starting from the melting temperature at a step of 30 K, in the range 923–1043 K within the framework of an approach based on three theoretical components: the linear trajectory method, the model square-well potential, and the random phase approximation. The results obtained are comparable with all the data of a computer experiment available in the literature, although to a better extent with the result of classical MD. At the same time, the slight increase in our calculated values of the self-diffusion coefficient with temperature can point to their better agreement with ab initio MD results with a significant increase in temperature, which is due to an increase in the RPA accuracy with temperature. The study shows that, in the absence of experimental information on the self-diffusion coefficient of a liquid metal, the approach of joint use of the linear trajectory method, the square-well potential, and the random phase approximation can be a workable tool for estimating this property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. E. A. Popova, A. B. Shubin, R. V. Kotenkov, L. E. Bodrova, A. V. Dolmatov, E. A. Pastukhov, and N. A. Vatolin, “Al–Sc–Zr master alloy and estimation of its modifying capacity,” Russ. Met. (Metally), 715–718 (2011).

  2. E. A. Popova, R. V. Kotenkov, A. B. Shubin, and E. A. Pastukhov, “Structural features of Al–Hf–Sc master alloys,” Rus. J. Non-Ferr. Met. 58, 639–643 (2017).

    Google Scholar 

  3. E. A. Popova, R. V. Kotenkov, A. B. Shubin, and I. Gilev, “Formation of metastable aluminides in Al–Sc–Ti (Zr, Hf) cast alloys,” Met. Mater. Int. 26, 1515–1523 (2020).

    Article  CAS  Google Scholar 

  4. A. I. Landa, A. A. Yuryev, A. V. Ruban, E. G. Gurskaya, Yu. K. Kovneristyi, and N. A. Vatolin, “Pseudopotential calculation of thermodynamic properties and glass transition temperatures of binary Ni–Al alloys,” J. Phys.: Condens. Matter. 3, 9229–9243 (1991).

    CAS  Google Scholar 

  5. A. A. Polyakov, E. M. Kern, and N. A. Vatolin, “Structure of an aluminum–nickel melt,” Rasplavy, No. 1, 16–24 (1996).

    Google Scholar 

  6. R. E. Ryltsev and L. D. Son, “Statistical description of glass-forming alloys with chemical interaction: application to Al–R systems,” Physica B 406, 3625–3630 (2011).

    Article  CAS  Google Scholar 

  7. S. K. Yadav, S. Lamichhane, L. N. Jha, N. P. Adhikari, and D. Adhikari, “Mixing behaviour of Ni–Al melt at 1873 K,” Phys. Chem. Liq. 54, 370–383 (2016).

    Article  CAS  Google Scholar 

  8. R. M. Khusnutdinov, A. V. Mokshin, S. G. Menshikova, A. L. Beltyukov, and V. I. Ladyanov, “Viscous and acoustic properties of AlCu melts,” JETP 122, 859–868 (2016).

    Article  Google Scholar 

  9. N. E. Dubinin, “Corresction to the Wills–Harrison approach: influence on the Fe-based liquid alloys thermodynamics,” J. Phys.: Conf. Ser. 936, 012006 (2017).

    Google Scholar 

  10. M. E. Trybula, P. W. Szafrański, and P. A. Korzhavyi, “Structure and chemistry of liquid Al–Cu alloys: molecular dynamic study versus thermodynamics-based modeling,” J. Mater. Sci. 53, 8285–8301 (2018).

    Article  CAS  Google Scholar 

  11. D. Sheng-Chao, S. **ao, Y. Wen-Sheng, G. Han-Jie, and G. **g, “Determination of thermodynamic properties in full composition range of Ti–Al binary melts based on atom and molecule coexistence theory,” Trans. Nonfer. Met. Soc. China 28, 1256–1264 (2018).

    Article  Google Scholar 

  12. J. Brillo, M. Watanabe, and H. Fukuyama, “Relation between excess volume, excess free energy, and isothermal compressibility in liquid alloys,” J. Mol. Liq. 326, 114395 (2021).

    Article  CAS  Google Scholar 

  13. I. O. Gilev, A. B. Shubin, and P. V. Kotenkov, “Thermodynamic characteristics of binary Al–Hf melts,” Russ. Met. (Metally), 919–923 (2021).

  14. E. Helfand, “Theory of the molecular friction comstant,” Phys. Fluids 4, 681–691 (1961).

    Article  CAS  Google Scholar 

  15. H. T. Davis and J. A. Palyvos, “Contribution to the friction coefficient from time correlation between hard and soft molecular interactions,” J. Chem. Phys. 46, 4043–4047 (1967).

    Article  CAS  Google Scholar 

  16. J. Woodhead-Galloway, T. Gaskell, and N. H. March, “Direct correlation function and equation of state of liquid argon,” J. Phys. C 1, 271–285 (1968).

    Article  Google Scholar 

  17. A. B. Finkel’shtein, “The SW–RPA and HS–PY self-diffusion coefficients for liquid sodium,” Adv. Studies Theor. Phys. 8, 61–62 (2014).

    Article  Google Scholar 

  18. A. B. Finkel’shtein, “The SW—RPA self-diffusion coefficient of liquid potassium,” Adv. Studies Theor. Phys. 8, 385–386 (2014).

    Article  Google Scholar 

  19. I. E. Furman, “Self-diffusion coefficient of liquid rubidium,” Adv. Studies Theor. Phys. 8, 653–654 (2014).

    Article  Google Scholar 

  20. S. N. Zlygostev, “Self-diffusion coefficient of liquid lithium,” Adv. Studies Theor. Phys. 8, 679–680 (2014).

    Article  Google Scholar 

  21. A. S. Fefelov, I. E. Furman, E. V. Nikitina, R. A. Ivanov, and I. V. Evdokimova, “Self-diffusion coefficients of cadmium and indium in liquid,” Russ. Met. (Metally), 680–681 (2017).

  22. J. L. Lebowitz and J. K. Percus, “Mean spherical model for lattice gases with extended hard cores and continuum fluids,” Phys. Rev. 144, 251–258 (1966).

    Article  CAS  Google Scholar 

  23. N. E. Dubinin, “Square-well self-diffusion coefficients in liquid binary alloys of alkali metals within the mean spherical approximation,” J. Alloys Compd. 803, 1100–1104 (2019).

    Article  CAS  Google Scholar 

  24. N. E. Dubinin, “Self-diffusion in liquid copper, silver, and gold,” Metals 10, 1651 (2020).

    Article  CAS  Google Scholar 

  25. R. K. Mishra, R. Lalneihpuii, and R. Pathak, “Investigation of structure, thermodynamic and surface properties of liquid metals using square well potential,” Chem. Phys. 457, 13–18 (2015).

    Article  CAS  Google Scholar 

  26. A. G. Davydov and N. K. Tkachev, “Features of the dimerization equilibrium in square-well fluids,” J. Mol. Liq. 275, 91–99 (2019).

    Article  CAS  Google Scholar 

  27. R. Lalneihpuii, R. Shrivastava, C. Lalnuntluanga, and R. K. Mishra, “Bhatia–Thornton fluctuations, transport, and ordering in partially ordered Al–Cu alloys,” J. Stat. Mech. 2019, 053202 (2019).

    Article  Google Scholar 

  28. N. E. Dubinin, “Comment on ‘Features of the dimerization equilibrium in square-well fluids,’” J. Mol. Liq. 291, 111198 (2019).

    Article  CAS  Google Scholar 

  29. N. E. Dubinin, “Comment on ‘Bhatia–Thornton fluctuations, transport, and ordering in partially ordered Al–Cu alloys,’” J. Stat. Mech. 2020, 033205 (2020).

    Article  Google Scholar 

  30. N. E. Dubinin, “Some remarks on the investigation of structure, thermodynamic and surface properties of liquid metals using square well potential,” Chem. Phys. 539, 110958 (2020).

    Article  CAS  Google Scholar 

  31. M. S. Wertheim, “Exact solution of the Percus–Yevick integral equation for hard spheres,” Phys. Rev. Lett. 10, 321–323 (1963).

    Article  Google Scholar 

  32. Y. Waseda, The Structure of Non-Crystalline Materials—Liquids and Amorphous Solids (McGraw-Hill, New York, 1980).

    Google Scholar 

  33. G. A. de Wijs, PhD Thesis, Rijksuniversiteit, Groningen, 1995.

  34. M. M. G. Alemany, J. Casas, C. Rey, L. E. Gonzalez, and L. J. Gallego, “Dynamic properties of liquid alkaline-earth metals,” Phys. Rev. E 56, 6818 (1997).

    Article  CAS  Google Scholar 

  35. S. Sengul, D. J. Gonzalez, and L. E. Gonzalez, “Structural and dynamic properties of liquid Mg. An orbital-free molecular dynamics study,” J. Phys.: Condens. Matter. 21, 115106 (2009).

    CAS  Google Scholar 

  36. D. Liu, J. Y. Qin, and T. K. Gu, “The structure of liquid Mg–Cu binary alloys,” J. Non-Cryst. Sol. 356, 1587–1592 (2010).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Kotenkov.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotenkov, P.V. Self-Diffusion Coefficient of Liquid Magnesium near the Melting Temperature. Russ. Metall. 2022, 951–954 (2022). https://doi.org/10.1134/S0036029522080079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522080079

Keywords:

Navigation