Log in

Nb–Ni- and V–Ni-Based Membranes for High-Purity Hydrogen Production

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Membrane separation of high-purity hydrogen is now one of the most effective technologies mainly due to the alternative replacement of expensive Pd–Ag membrane alloys with cheaper ones based on the Group VB bcc metals (V, Nb, Ta, etc.) with an amorphous or nanocrystalline structure and a permeability exceeding that of fcc palladium alloys. Although hydrogen selection membrane alloys made of bcc metals Co, V, Cr, Ta, and Nb exhibit a very high hydrogen permeability, they undergo brittle fracture because of excess hydrogen absorption. The hydrogen kinetics in titanium-alloyed membrane binary alloys Nb–Ni and V–Ni is analyzed and compared according to criteria such as strength characteristics, thermal stability, and hydrogen embrittlement resistance. The dissolution of Ni and Ti in niobium and vanadium phases increases the critical temperature of β hydride formation from 473 to 673 K. In addition, Ni–Ti and NiTi2 compounds stabilize the matrix structure of membrane alloys and prevent hydride formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. D. Fontana, N. Sirini, M. Comaglia Laura, and A. M. Tarditi, J. Membr. Sci. 563, 351–359 (2018). https://doi.org/10.1016/j.memsci.2018.06.001.

    Article  Google Scholar 

  2. N. A. Vatolin, V. A. Polukhin, R. M. Belyakova, and E. A. Pastukhov, “Simulation of the influence of hydrogen on the structural properties of amorphous iron,” Mater. Sci. Eng. 99 (2), 551–554 (1988).

    Article  CAS  Google Scholar 

  3. F. C. Li, T. Liu, J. Y. Zhang, S. Shuang, et al., Mater. Today Adv. 4, 100027(1–20) (2019). https://doi.org/10.1016/j.mtadv.2019.100027

  4. V. A. Polukhin, N. I. Sidorov, and N. A. Vatolin, Russ. Metall. (Metally), No. 8, 758–780 (2019). https://doi.org/10.1134/S0036029519080123

  5. X. Z. Li, X. Liang, D. Liu, et al., Sci. Rep. 7, 209(1–11) (2017). https://doi.org/10.1038/s41598-017-00335-0

  6. V. A. Polukhin, R. M. Belyakova, and N. A. Vatolin, “Influence of the diffusion motion of hydrogen on the structure of iron in the crystalline, liquid, and amorphous states,” Dokl. Akad. Nauk SSSR 296 (3), 591–595 (1987).

    CAS  Google Scholar 

  7. A. Suzuki and H. A. Yukawa, J. Memb. Sci. 10 (6), E120(1–22) (2020). https://doi.org/10.3390/membranes10060120

  8. S. Sarker, D. Isheim, G. King, et al., Sci. Rep., No. 8, 6084(1–13) (2018). https://doi.org/10.1038/s41598-018-24433-9

    Article  CAS  Google Scholar 

  9. X. Z. Li, D. Liu, R. Chen, et al., “Changes in microstructure, ductility and hydrogen permeability of Nb-(Ti, Hf)Ni alloy membranes by the substitution of Ti by Hf,” J. Membr. Sci. 484, 47–56 (2015).

    Article  CAS  Google Scholar 

  10. P. Jiang, B. Sun, H. Wang, et al., Mater. Res. Express. 7, 066505(1–11) (2020). https://doi.org/10.1088/2053-1591/ab98ca

  11. E. Yan, H. Huanga, S. Sun, et al., “Membrane,” J. Membr. Sci. 565, 411–424 (2018). https://doi.org/10.1016/j.memsci.2018.08.060

    Article  CAS  Google Scholar 

  12. Y. Lu, M. Gou, R. Bai, et al., Int. J. Hydrogen Energy 42, 22925–22932 (2017). https://doi.org/10.1016/j.ijhydene.2017.07.056

    Article  CAS  Google Scholar 

  13. V. A. Polukhin, E. D. Kurbanova, and R. M. Belyakova, Met. Sci. Heat Treat. 63 (1–2), 3–10 (2021). https://doi.org/10.1007/s11041-021-00639-z

  14. M. I. Mendelev, M. J. Kramer, R. T. Ott, and D. J. Sordelet, Philos. Mag. A 89 (2), 109–126 (2009). https://doi.org/10.1080/14786430802570648

    Article  CAS  Google Scholar 

  15. V. A. Polukhin, Y. Y. Gafner, I. V. Chepkasov, and E. D. Kurbanova, Russ. Metall. (Metally), No. 2, 112–125 (2014). https://doi.org/10.1134/S0036029514020128

  16. V. A. Polukhin and N. A. Vatolin, Russ. Chem. Rev. 84 (5), 498–539 (2015). https://doi.org/10.1070/RCR4411

    Article  CAS  Google Scholar 

  17. X.-L. Wang, J. Almer, C. Liu, et al., Phys. Rev. Lett. 9, 265501(1–9) (2003). https://doi.org/10.1103/PhysRevLett.91.265501

  18. A. E. Galashev and V. A. Polukhin, Colloid. J. 73 (6), 761–767 (2011). https://doi.org/10.1134/S1061933X11050036

    Article  CAS  Google Scholar 

  19. S. Hara, M. Ishitsuka, H. Suda, et al., Adv. Mater. Res. 117, 81–85 (2010). https://doi.org/10.4028/www.scientific.net/AMR.117.81

    Article  CAS  Google Scholar 

  20. T. Ozaki, Y. Zhang, M. Komaki, and C. Nishimura, Int. J. Hydrogen Energy 28 (11), 1229–1235 (2003). https://doi.org/10.1016/S0360-3199(02)00251-3

    Article  CAS  Google Scholar 

  21. O. Palumbo, F. Trequattrini, S. Sarker, et al., Challenges 8 (4), 1–12 (2017). https://doi.org/10.3390/challe8010004

    Article  Google Scholar 

  22. V. A. Polukhin, M. M. Dzugutov, M. M. Evseev, et al., “Short range order and character of atom motion in liquid metals,” Dokl. Akad. Nauk SSSR 223 (3), 650–652 (1975).

    CAS  Google Scholar 

  23. C. Suryanarayana and Inoue, Bulk Metallic Glasses. Technology & Engineering 2nd. ed. (CRC Press. Taylor & Francis, 2017).

  24. M. D. Dolan, S. Hara, N. C. Dave, et al., Sep. Purif. Technol. 65, 298–304 (2009). https://doi.org/10.1016/j.seppur.2008.10.051

    Article  CAS  Google Scholar 

  25. H. Y. Ding, W. Zhang, S. I. Yamaura, and K. F. Yao, Mater. Trans. 54 (8), 1330–1334 (2013). https://doi.org/10.2320/matertrans.mf201310

    Article  CAS  Google Scholar 

  26. V. A. Polukhin and N. A. Vatolin, Modeling of Disordered and Nanostructured Phases (Izd. UrO RAN, Yekaterinburg, 2011).

    Google Scholar 

  27. T. P. Chernyaeva and A. V. Ostapov, “Hydrogen in zirconium,” VANT 5 (87), 16–32 (2013).

    Google Scholar 

  28. W. Luo, K. Ishikawa, and K. Aoki, “Hydrogen permeability in Nb–Ti–Ni alloys containing much primary (Nb,Ti) phase,” Mater. Trans. 46 (10), 2253–2259 (2005).

    Article  CAS  Google Scholar 

  29. D. M. Liu, X. Z. Li, H. Y. Geng, et al., J. Membr. Sci. 553, 171–179 (2018). https://doi.org/10.1016/j.memsci.2018.02.052

    Article  CAS  Google Scholar 

  30. R. M. Belyakova, V. A. Piven, N. I. Sidorov, and V. A. Polukhin, “Physical and chemical aspects of the study of clusters nanostructures and nanomaterials,” No. 11, 74–85 (2019). https://doi.org/10.26456/pcascnn/2019.11.074

  31. A. Voyt, N. Sidorov, I. Sipatov, et al., Int. J. Hydrogen Energy 42 (5), 3058–3061 (2016). https://doi.org/10.1016/j.ijhydene.2016.10.033

    Article  CAS  Google Scholar 

  32. G. Song, M. D. Dolan, M. E. Kellam, et al., J. Alloys Compd. 509 (38), 9322–9328 (2011). https://doi.org/10.1016/jjallcom.2011.07.020

    Article  CAS  Google Scholar 

  33. Q. Wang, Y. Yang, H. Jiang, et al., “Superior tensile ductility in bulk metallic glass with gradient amorphous structure,” Sci. Rep. 4, 4757(1–9) (2014).

  34. H. Yukawa, T. Nambu, and Y. Matsumoto, Mater. Trans. 52 (4), 610–613 (2011). https://doi.org/10.2320/matertrans.MA201007

    Article  CAS  Google Scholar 

  35. V. A. Polukhin and N. A. Vatolin, Modeling of Amorphous Metals (Nauka, Moscow, 1985).

    Google Scholar 

  36. W. Luo, K. Ishikawa, and K. Aoki, J. Alloys Compd. 460, 353–356 (2008). https://doi.org/10.1016/jjallcom.2007.06.061

    Article  CAS  Google Scholar 

  37. V. A. Polukhin, N. I. Sidorov, and R. M. Belyakova, “Physical and chemical aspects of the study of clusters nanostructures and nanomaterials,” I (12), 457–473 (2020). https://doi.org/10.26456/pcascnn/2020.12.457

  38. V. A. Polukhin, E. D. Kurbanova, and N. S. Mitrofanova, Russ. Metall. (Metally), No. 2, 116–126 (2017). https://doi.org/10.1134/S0036029517020112

  39. V. A. Polukhin, E. D. Kurbanova, and A. E. Galashev, “Classification of d-metal/graphene interfaces according to a sorption mechanism and the resistance to thermoactivated and melting. MD simulation,” Russ. Metall. (Metally), No. 8, 633–646 (2014).

  40. S. Tosti, Int. J. Hydrogen Energy 35 (22), 12650–12659 (2010). https://doi.org/10.1016/j.ijhydene.2010.07.116

    Article  CAS  Google Scholar 

  41. V. A. Polukhin, R. M. Belyakova, and L. K. Rigmant, Russ. Metall. (Metally), No. 8, 681–698 (2010). https://doi.org/10.1134/S0036029510080045

  42. F. Braun, J. B. Miller, A. J. Gellman, et al., Int. J. Hydrogen Energy 37, 18547–18555 (2012). https://doi.org/10.1016/j.ijhydene.2012.09.040

    Article  CAS  Google Scholar 

  43. V. A. Polukhin, E. A. Pastukhov, and N. I. Sidorov, “Structure of alloys Pd1 – xSix, Fe1 – xPx in liquid and amorphous states,” Phys. Met. Metallogr. 57 (3), 176–179 (1984).

    Google Scholar 

  44. V. A. Polukhin, E. D. Kurbanova, and N. A. Vatolin, Russ. Metall. (Metally), No. 2, 95–109 (2018). https://doi.org/10.1134/S0036029518020167

  45. E. A. Pastukhov, N. I. Sidorov, V. A. Polukhin, and V. P. Chentsov, “Short order and hydrogen transport in amorphous palladium materials,” Defect and Diffusion Forum 283–286 (1), 149–154 (2009).

  46. A. E. Galashev and V. A. Polukhin, “Comparative of a copper film on graphene by argon-beam bombardment,” J. Surf. Inv. 8 (5), 1082–1088 (2014).

    Article  CAS  Google Scholar 

  47. R. M. Belyakova, V. A. Polukhin, and E. D. Kurbanova, “Effect of admixtures of surface active elements in Fe–C–Si alloys under rapid solidification of melt on the quality of structural,” Metal Sci. Heat Treat. 58 (3–4), 187–191 (2016).

  48. N. A. Vatolin, R. M. Belyakova, V. A. Polukhin, et al., “Method for producing an amorphous ribbon (H2 bubbling of a melt before casting, embrittling hydrogenation of amorphous ribbons before grinding),” RF patent 1551, 1993.

Download references

Funding

This work was carried out according to a state assignment to the Institute of Metallurgy.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. D. Kurbanova or V. A. Polukhin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyakova, R.M., Kurbanova, E.D., Sidorov, N.I. et al. Nb–Ni- and V–Ni-Based Membranes for High-Purity Hydrogen Production. Russ. Metall. 2022, 851–860 (2022). https://doi.org/10.1134/S0036029522080031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029522080031

Keywords:

Navigation