Log in

Interaction of Exogenous Refractory Oxide Nanoparticles with Tin in Fe—Cr Melts and Their Influence on the Capillary Properties of the Metal

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The heterophase interaction of exogenous ZrO2 and Y2O3 nanoparticles with a surfactant (tin) in the Fe–Cr model system is studied with allowance for the use of oxide nanoparticles in the production of oxide dispersion strengthened steels. The study of the influence of the size factor demonstrates that the extreme values of the degree of tin removal are 15.4 rel. % for the Fe–Cr–Sn–ZrO2 system and 7.1 rel. % for the Fe–Cr–Sn–Y2O3 system. The sessile drop method is used to investigate the capillary properties of a metal with nanoparticles. The introduction of nanoparticles into the Fe–Cr–Sn melt is found to cause the inversion of coefficient ∂σ/∂T and the decompression of the melt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. SHS is self-propagating high-temperature synthesis.

  2. Hereafter, the contents are given in wt %.

REFERENCES

  1. M. F. Sidorenko, Theory and Practice of Powder Blowing of Metal (Metallurgiya, Moscow, 1973).

    Google Scholar 

  2. Yu. A. Minaev, “Role of surface forces in accelerating the mass transfer in metallurgical systems,” Metals, No. 5, 12–16 (2003).

    Google Scholar 

  3. A. S. Guzenkova, S. S. Ivanov, G. A. Isaev, and V. A. Kudrin, Production of Steel Free of Nonferrous Metal Impurities (MGVMI, Moscow, 2008).

    Google Scholar 

  4. M. Tohru, “Acceleration of copper and tin removal from molten steel by decarburization under reduced pressure,” Tetsu-to-Hagane 86 (11), 741–747 (2000).

    Article  Google Scholar 

  5. X. Hu, Z. Yan, P. Jiang, L. Zhu, K. Chou, H. Matsuura, and F. Tsukihashi, “Removal of copper from molten steel using FeO–SiO2–CaCl2 flux,” ISIJ Int. 53 (5), 920–922 (2013).

    Article  CAS  Google Scholar 

  6. L. Luo, J. Wang, L. Wang, and Z. Li, “Study on arsenic removal in molten steel,” in Proceedings of 6th International Symposium on High-Temperature Metallurgical Processing (Springer, 2016), pp. 699–705.

  7. K. Nogi, W. B. Chung, A. McLean, and W. A. Miller, “Surface tension of liquid Fe–(Cu, Sn, Cr) and Ni–(Cu, Sn) binary alloys,” Mater. Trans. JIM 32 (2), 164–168 (1991).

    Article  CAS  Google Scholar 

  8. V. I. Nizhenko and L. I. Floka, Surface Tension of Liquid Metals and Alloys: A Reference (Metallurgiya, Moscow, 1981).

    Google Scholar 

  9. V. T. Burtsev and S. N. Anuchkin, and A. V. Samokhin, “Influence of exogenous refractory nanoparticles on the removal of copper from iron melts and the capillary properties of a metal,” Probl. Chern. Metall. Materialoved., No. 3, 5–15 (2019).

  10. S. N. Anuchkin, V. T. Burtsev, A. V. Samokhin, and I. A. Gvozdkov, “Effect of the size factors on the heterophase interaction of exogenous refractory compound nanoparticles with sulfur in a model nickel melt,” Russ. Metall. (Metally), No. 3, 178–184 (2012).

  11. V. T. Burtsev, S. N. Anoshkin, and A. V. Samokhin, “Physical chemistry of the interaction of exogenous refractory nanophases with tin and antimony in model iron melts in a reducing atmosphere,” in Baikov Institute of Metallurgy and Materials Science—80 Years (Interkontakt Nauka, Moscow, 2018), pp. 256–285.

    Google Scholar 

  12. K. N. Vdovin, N. A. Feoktistov, D. A. Gorlenko, O. A. Nikitenko, and D. D. Hamidulina, “Modification of high-manganese steel castings by carbonitride titanium,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall. 62 (3), 188–194 (2019).

    CAS  Google Scholar 

  13. V. I. Bol’shakov and A. V. Kalinin, “Modification of structural materials during saturation by nanoparticles of plasma chemical synthesis,” Vestn. KhNADU, No. 82, 5–12 (2018).

    Google Scholar 

  14. V. A. Poluboyarov, Z. A. Korotaeva, A. A. Zhdanok, V. A. Kuznetsov, and A. V. Samokhin, “Intraform modification of cast iron. Influence of the modifiers synthesized by plasma chemical and SHS methods on the service characteristics of gray cast iron,” Izv. Vyssh. Uchebn. Zaved., Chern. Metall. 58 (8), 561–566 (2015).

    CAS  Google Scholar 

  15. R. Zhu, Y. Su, and X. Qin, “Study on the influence of nano-SiC on the structure and properties of nodular cast iron,” IOP Conf. Ser.: Mater. Sci. Eng. 250, 012051–012058 (2017).

  16. V. S. Ageev, A. A. Nikitina, V. V. Sagaradze, B. V. Safronov, A. P. Chukanov, and V. V. Tsvelev, “Use of the metallurgy of sprayed and melt-quenched powders for the manufacture of fuel-element cans from oxide dispersion strengthened (ODS) high-temperature ferritic-martensitic steels. Part 1,” Vopr. Atom. Nauki Tekhn., No. 2, 134–141 (2007).

  17. R. L. Klueh, J. P. Shingledecker, R. W. Swindeman, and D. T. Hoelzer, “Oxide dispersion-strengthened steels: a comparison of some commercial and experimental alloys,” J. Nucl. Mater. 341, 103–114 (2005).

    Article  CAS  Google Scholar 

  18. I. S. Kulikov, Deoxidation of Metals (Metallurgiya, Moscow, 1975).

    Google Scholar 

  19. Z. Buzek, Fundamental Thermodynamic Data on Metallurgical Reactions and Interactions of Elements in System Significant for Metallurgical Theory and Practice (Vyzkumny Ustav Hutnictvi Zeleza, Ostrava, 1979).

    Google Scholar 

  20. Yu. V. Naidich, Contact Phenomena in Metal Melts (Nauk. Dumka, Kiev, 1972).

    Google Scholar 

  21. A. N. Anikeev, I. V. Chumanov, and V. I. Chumanov, “Yttrium oxide wetting angle examination,” Mater. Sci. Forum 843, 34–38 (2016).

    Article  Google Scholar 

  22. E. T. Turkdogan, Physical Chemistry of High-Temperature Processes (Metallurgiya, Moscow, 1985).

    Google Scholar 

  23. Steelmaking Data Sourcebook: Handbook (Gordon & Breach, New York, 1988).

  24. S. N. Anuchkin, I. A. Gvozdkov, A. V. Samokhin, G. V. Serov, and V. T. Burtsev, “Properties of the composite nanomaterial Al2O3/Ni synthesized by mechanical alloying,” Fiz. Khim. Obrab. Mater., No. 2, 71–78 (2011).

  25. A. S. Krylov, A. V. Vvedensky, A. M. Katsnelson, and A. F. Tugovikov, “Software package for determination of surface tension of liquid metals,” J. Non-Cryst. Solids 845, 156–158 (1993).

    Google Scholar 

  26. Yu. V. Naidich and V. I. Eremenko, “Sessile drop technique for determining the surface tension and density of molten metals at high temperatures,” Fiz. Met. Metalloved. 11 (6), 883–888 (1961).

    CAS  Google Scholar 

  27. B. A. Baum, G. A. Khasin, G. V. Tyagunov, E. A. Klimenkov, Yu. A. Bazin, L. V. Kovalenko, V. B. Mikhailov, and G. A. Raspopova, Liquid Steel (Metallurgiya, Moscow, 1984).

    Google Scholar 

  28. N. Y. Toker, L. S. Darken, and A. Muan, “Phase relations and thermodynamics of the system Fe–Cr–O in the temperature range of 1600°C to 1825°C (1873 to 2098 K) under strongly reducing conditions,” Met. Trans. B 22 (5), 689–703 (1991).

    Article  Google Scholar 

  29. S. Dimitrov, H. Wenz, K. Koch, and D. Janke, “Control of the chromium–oxygen reaction in pure iron melts,” Steel Res. 66 (2), 39–86 (1995).

    Article  CAS  Google Scholar 

  30. K. Mukai, Z. Li, and M. Zeze, “Surface tension and wettability of liquid Fe–16 mass % Cr–O alloy with alumina,” Mater. Trans. 43 (7), 1724–1731 (2002).

    Article  CAS  Google Scholar 

  31. B. J. Keene, “Review of data for the surface tension of iron and its binary alloys,” Int. Mater. Rev. 33 (1), 1–37 (1988).

    Article  CAS  Google Scholar 

Download references

Funding

This work was according to state assignment 075-00947-20-00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. N. Anuchkin or V. T. Burtsev.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anuchkin, S.N., Burtsev, V.T. & Samokhin, A.V. Interaction of Exogenous Refractory Oxide Nanoparticles with Tin in Fe—Cr Melts and Their Influence on the Capillary Properties of the Metal. Russ. Metall. 2021, 53–61 (2021). https://doi.org/10.1134/S003602952101002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602952101002X

Keywords:

Navigation