Log in

Estimation of Net Heat of Combustion of Light Kerosene Distillates Using Artificial Neural Networks

  • CHEMOINFORMATICS AND COMPUTER MODELING
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this study, six feedforward neural network models were developed to estimate the net heat of combustion of light kerosene distillates. These networks use different sets of physicochemical properties of the distillates as input variables and are all composed of 8 sigmoid hidden neurons and one linear output neuron. The networks were designed in MATLAB software with 205 data points using the nftool command. Determining the relative importance of input variables in the networks revealed the significant effect of density on the estimates. The developed models as well as two correlative methods taken from the literature were used to predict the net heat of combustion of 40 other samples. The statistical analysis of the results was carried out by calculating for each estimation method the absolute errors, the mean absolute error, the standard deviation of the absolute errors and the coefficient of determination. It was found that the most accurate method is the neural network model based on the density, viscosity, aromatics content and sulfur content of the distillates. The least efficient method is the neural network that does not include density in its inputs, which once again indicates the importance of this property. Consequently, density should be taken into account to ensure high prediction ability of estimation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. G. Speight, Handbook of Petroleum Product Analysis, Ed. by M. F. Vitha, 2nd ed. (Wiley, New Jersey, 2015). https://doi.org/10.1002/9781118986370

    Book  Google Scholar 

  2. T. A. Albahri, Energy Convers. Manage. 76, 1143 (2013). https://doi.org/10.1016/j.enconman.2013.09.019

    Article  CAS  Google Scholar 

  3. M. R. Riazi, in Characterization and Properties of Petroleum Fractions (ASTM Int. Pennsylvania, 2005), p. 297. https://doi.org/10.1520/MNL11407M

    Book  Google Scholar 

  4. J. C. Guibet, in Petroleum Refining, Ed. by J. P. Wauquier (Editions Technip, Paris, 1995), Vol. 1, p. 177.

    Google Scholar 

  5. GOST (State Standard) 21261-91: Oil products. Method for the determination of gross calorific value and calculation of net calorific value.

  6. GOST (State Standard) 1012-2013: Aviation petrols. Specifications.

  7. GOST (State Standard) 10227-2013: Jet fuels. Specifications.

  8. GOST (State Standard) 11065-90: Jet propulsion fuel. Method for the calculation of low specific heat of combustion.

  9. A. F. Gorenkov, T. A. Lifanova, I. G. Klyuiko, and A. I. Kupreev, Chem. Technol. Fuels Oils 20, 262 (1984). https://doi.org/10.1007/BF00728998

    Article  Google Scholar 

  10. GOST (State Standard) 34194-2017: Aviation fuels. Estimation of net heat of combustion.

  11. V. T. Bugai, A. V. Oreshenkov, and O. A. Burmistrov, Chem. Technol. Fuels Oils 34, 272 (1998). https://doi.org/10.1007/BF02694074

    Article  Google Scholar 

  12. V. T. Bugai, A. V. Oreshenkov, and O. A. Burmistrov, Chem. Technol. Fuels Oils 36, 56 (2000). https://doi.org/10.1007/BF02725249

    Article  CAS  Google Scholar 

  13. R. S. Fein, H. I. Wilson, and J. Sherman, Ind. Eng. Chem. 45, 610 (1953). https://doi.org/10.1021/ie50519a041

    Article  CAS  Google Scholar 

  14. J. Zou, Y. Han, and S. S. So, in Artificial Neural Networks: Methods and Applications, Vol. 458: Methods in Molecular Biology, Ed. by D. J. Livingstone (Humana Press, New Jersey, 2008), p. 14. https://doi.org/10.1007/978-1-60327-101-1_2

  15. H. Cartwright, in Reviews in Computational Chemistry, Ed. by K. B. Lipkowitz and T. R. Cundari (Wiley, New Jersey, 2007), Vol. 25, p. 349. https://doi.org/10.1002/9780470189078.ch8

    Book  Google Scholar 

  16. M. Pirdashti, S. Curteanu, M. H. Kamangar, M. H. Hassim, and M. A. Khatami, Rev. Chem. Eng. 29, 205 (2013). https://doi.org/10.1515/revce-2013-0013

    Article  CAS  Google Scholar 

  17. K. Hornik, Neural Networks 4, 251 (1991).https://doi.org/10.1016/0893-6080(91)90009-T

  18. G. Liu, L. Wang, H. Qu, H. Shen, X. Zhang, S. Zhang, and Z. Mi, Fuel 86, 2551 (2007). https://doi.org/10.1016/j.fuel.2007.02.023

    Article  CAS  Google Scholar 

  19. G. D. Garson, AI Expert 6, 47 (1991).

    Google Scholar 

  20. Crude Oils of the USSR, The Handbook, Ed. by Z. V. Driatskaya (Khimiya, Moscow, 1971), Vol. 1 [in Russian].

    Google Scholar 

  21. Crude Oils of the USSR, The Handbook, Ed. by Z. V. Driatskaya (Khimiya, Moscow, 1972), Vol. 2 [in Russian].

    Google Scholar 

  22. Crude Oils of the USSR, The Handbook, Ed. by Z. V. Driatskaya (Khimiya, Moscow, 1972), Vol. 3 [in Russian].

    Google Scholar 

  23. Crude Oils of the USSR, The Handbook, Ed. by Z. V. Driatskaya (Khimiya, Moscow, 1974), Vol. 4 [in Russian].

    Google Scholar 

  24. S. Chellam, J. Membr. Sci. 258, 35 (2005). https://doi.org/10.1016/j.memsci.2004.11.038

    Article  CAS  Google Scholar 

  25. A. T. C. Goh, J. Geotech. Eng. 120, 1467 (1994).https://doi.org/10.1061/(ASCE)0733-9410(1994)120:9(1467)

  26. J. D. Olden and D. A. Jackson, Ecol. Modell. 154, 135 (2002).https://doi.org/10.1016/S0304-3800(02)00064-9

  27. L. Airemlou, M. A. Behnajady, and K. Mahanpoor, Russ. J. Phys. Chem. A 93, 1769 (2019). https://doi.org/10.1134/S0036024419090097

    Article  Google Scholar 

  28. A. R. Rajabzadeh, S. Zendehboudi, A. Lohi, and A. Elkamel, Can. J. Chem. Eng. 91, 1621 (2013). https://doi.org/10.1002/cjce.21775

    Article  CAS  Google Scholar 

  29. M. Agarwal, K. Singh, and S. P. Chaurasia, Indian Chem. Eng. 52, 347 (2010). https://doi.org/10.1080/00194506.2010.616325

    Article  CAS  Google Scholar 

  30. S. Sinehbaghizadeh, A. Roosta, N. Rezaei, M. M. Ghiasi, J. Javanmardi, and S. Zendehboudi, Fuel 255, 115649 (2019). https://doi.org/10.1016/j.fuel.2019.115649

  31. A. V. Oreshenkov, V. T. Bugai, and O. A. Burmistrov, Chem. Technol. Fuels Oils 38, 386 (2002). https://doi.org/10.1023/A:1022133726134

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kahina Bedda.

Ethics declarations

CONFLICT OF INTEREST

The author declares that he has no conflict of interest related to this article.

ADDITIONAL INFORMATION

Kahina Bedda, ORCID: https://orcid.org/0000-0002-8241-3911.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahina Bedda Estimation of Net Heat of Combustion of Light Kerosene Distillates Using Artificial Neural Networks. Russ. J. Phys. Chem. (2024). https://doi.org/10.1134/S0036024424700183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036024424700183

Keywords:

Navigation