Log in

Equilibrium Concentrations Distribution of Copper(II) with Di-Schiff Base in Hollow Fibers Contactor Membrane

  • PHYSICAL CHEMISTRY OF SEPARATION PROCESSES. CHROMATOGRAPHY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The equilibrium concentrations in membrane contactors are investigated in closed system for the extraction of copper from sulfate medium with di-Schiff base in toluene. The equilibrium distribution curves, is carried out from the mass action law, allows the determination of the reaction equilibrium constant. The calculation of the distribution coefficient in the membrane contactor is carried out from global mass balances and extraction isotherms. The experimental distribution coefficient is compared with the calculated value. The influence of parameters as the aqueous and organic phase flowrates and the distribution coefficient on the sensitivity of the system has been checked with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. S. Abe, T. Sone, K. Fujii, and M. Endo, Anal. Chim. Acta 274, 141 (1993). https://doi.org/10.1016/0003-2670(93)80614-Q

  2. N. Shori, Y. Dutt, and R. P. Singh, J. Inorg. Nucl. Chem. 34, 2007 (1972). https://doi.org/10.1016/0022-1902(72)80554-2

  3. O. Ummuhan, A. Hakan, G. Pinar, and O. Miras, Sep. Sci. Technol. 41, 391 (2006). https://doi.org/10.1080/01496390500496942

    Article  CAS  Google Scholar 

  4. S. Oshima, N. Hirayama, K. Kubono, H. Kokusen, and T. Honjo, Anal. Sci. 18, 1351 (2002). https://doi.org/10.2116/analsci.18.1351

    Article  CAS  PubMed  Google Scholar 

  5. S. Oshima, N. Hirayama, K. Kubono, H. Kokusen, and T. Honjo, Anal. Sci. 17, i1287 (2001). https://doi.org/10.14891/analscisp.17icas.0.i1287.0

    Article  Google Scholar 

  6. J. Aggett and R. A. Richardson, Anal. Chim. Acta 50, 269 (1970). https://doi.org/10.1016/0003-2670(70)80066-6

  7. G. Tantaru, V. Dorneanu, M. Stan, and J. Phar, Biomed. Anal. 27, 827 (2002). https://doi.org/10.1016/S0731-7085(01)00517-9

  8. A. Rouhollahi, E. Zolfonoun, and M. S. Niasari, Sep. Purif. Technol. 54, 28 (2007). https://doi.org/10.1016/j.seppur.2006.08.016

    Article  CAS  Google Scholar 

  9. Y.-S. Kim, I. Gyo, M.-H. Kim, and J.-M. Choi, Bull. Korean Chem. Soc. 27, 1757 (2006). https://doi.org/10.5012/bkcs.2006.27.11.1757

    Article  CAS  Google Scholar 

  10. I. Gyo, Y.-S. Kim, and J.-M. Choi, Bull. Korean. Chem. Soc. 29, 969 (2008). https://doi.org/10.5012/bkcs.2008.29.5.969

    Article  Google Scholar 

  11. M. Shamsipur, M. Yousefi, M. Hoseini, M. R. Ganjali, H. Sharghi, and H. A. Naeimi, Anal. Chem. 73, 2869 (2001). https://doi.org/10.1021/ac001449d

    Article  CAS  PubMed  Google Scholar 

  12. M. Shamsipur, A. R. Ghiasvand, H. Sharghi, and H. Naeimi, Anal. Chim. Acta 408, 271 (2000). https://doi.org/10.1016/S0003-2670(99)00873-9

  13. S. I. Lazarev, Yu. M. Golovin, and D. A. Rodionov, Russ. J. Phys. Chem. A 95, 2125 (2021)

    Article  CAS  Google Scholar 

  14. V. I. Vasil’eva and E. A. Goleva, Russ. J. Phys. Chem. A 87, 2125 (2013).

    Article  Google Scholar 

  15. M. R. Yaftian, M. Burgard, B. C. D. Dieleman, and D. Matt, J. Membr. Sci. 144, 57 (1998). https://doi.org/10.1016/S0376-7388(98)00031-3

  16. A. Yu. Kharina, T. V. Elisseva, and V. F. Selemenev, Russ. J. Phys. Chem. A 95, 2118 (2021).

    Article  CAS  Google Scholar 

  17. W. S. Ho and K. K. Sirkar, Membrane Handbook (Van Nostrand Reinhold, New York, 1992).

    Book  Google Scholar 

  18. A. N. Turanov and V. K. Karandashev, Russ. J. Phys. Chem. A 94, 1471 (2020).

    Article  CAS  Google Scholar 

  19. A. K. Pabby and A. M. Sastre, Solvent Extract. Ion Exchange 15, 331 (2002)

    CAS  Google Scholar 

  20. J. Rydberg, M. Cox, C. Musikas, and G. R. Choppin, Solvent Extraction Principles and Practices, 2nd ed. (Marcel Dekker, New York, 2004).

    Google Scholar 

  21. A. Urtiaga, M. J. Abellán, A. Irabien, and I. Ortiz, Desalination 191, 79 (2006). https://doi.org/10.1016/j.desal.2005.08.011

    Article  CAS  Google Scholar 

  22. J. A. Carrera, E. Bringas, M. F. San Román, and I. Ortiz, J. Membr. Sci. 326, 672 (2009). https://doi.org/10.1016/j.memsci.2008.11.002

    Article  CAS  Google Scholar 

  23. B. Galán, D. Castañeda, and I. Ortiz, Water Res. 39, 4317 (2005). https://doi.org/10.1016/j.watres.2005.08.015

    Article  CAS  PubMed  Google Scholar 

  24. A. I. Alonso, B. Galán, M. González, and M. I. Ortiz, Ind. Eng. Chem. Res. 38, 1666 (1999). https://doi.org/10.1021/ie980288p

    Article  CAS  Google Scholar 

  25. D. J. Kathios, G. D. Jarvinen, S. L. Yarbro, and B. F. Smith, J. Membr. Sci. 97, 251 (1994).https://doi.org/10.1016/0376-7388(94)00166-V

  26. A. Geist, M. Weigl, and K. Gompper, Radiochim. Acta 93, 197 (2005). https://doi.org/10.1524/ract.93.4.197.64068

    Article  CAS  Google Scholar 

  27. J. Haddaoui, D. Trebouet, J. M. Loureiro, and M. Burgard, Sep. Sci. Technol. 39, 3839 (2004). https://doi.org/10.1081/SS-200043001

    Article  CAS  Google Scholar 

  28. H. C. Kao and R. S. Juang, J. Membr. Sci. 264, 104 (2005). https://doi.org/10.1016/j.memsci.2005.04.026

    Article  CAS  Google Scholar 

  29. B. S. Furnish and A. J. Hannaford, Vogel’s Textbook of Practical Organic Chemistry (Prentice-Hall, Englewood Cliffs, 1989), p. 1378.

    Google Scholar 

  30. J. Yang, J. J. Peng, J. Jia, and H. Fang, J. Environ. Eng. 133, 294 (2007). https://doi.org/10.1061/(ASCE)07339372(2007)133:3(294)

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamina Boukraa.

Ethics declarations

The author of this work declares that she has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boukraa, Y. Equilibrium Concentrations Distribution of Copper(II) with Di-Schiff Base in Hollow Fibers Contactor Membrane. Russ. J. Phys. Chem. (2024). https://doi.org/10.1134/S0036024424040046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S0036024424040046

Keywords:

Navigation