Log in

Highly Active and Highly Toxic Resistant of CoMnOX for Catalytic Oxidation of Toluene

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The hydrolysis-driven redox co-precipitation method was employed to initiate the reduction of KMnO4 by H2O2, facilitated by the generation of H+ through the hydrolysis of cobalt salts. This controlled redox kinetics resulted in the formation of a Co–Mn solid solution catalyst, which exhibited high efficiency in the catalytic oxidation of toluene. T90 (the reaction temperature corresponding to a conversion of 90%) was only 214°C, at toluene concentration of 1000 ppm and weight hourly space velocity (WHSV) of 36 000 mL g–1 h–1. Moreover, the conversion of toluene was still more than 98% with a continuous reaction of 77 h at 260°C. Additionally, the conversion of toluene remained above 98% even after 4 h of 1,2-dichloroethane poisoning reaction at 260°C, indicating that the Co1Mn2 catalyst exhibited both high activity and resistance to toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Y. Guo, M. Wen, G. Li, et al., Appl. Catal. B 281, 119447 (2021).

  2. Y. Zheng, R. Han, L. Yang, et al., Chem. Eng. J. 465, 142807 (2023).

  3. R. Atkinson, Atmos. Environ. 34, 2063 (2000).

    Article  ADS  CAS  Google Scholar 

  4. C. He, J. Cheng, X. Zhang, et al., Chem. Rev. 119, 4471 (2019).

    Article  PubMed  CAS  Google Scholar 

  5. J. R. Li, F. K. Wang, C. He, et al., Powder Technol. 363, 95 (2020).

    Article  CAS  Google Scholar 

  6. H. Huang, Y. Xu, Q. Feng, et al., Catal. Sci. Technol. 5, 2649 (2015).

    Article  CAS  Google Scholar 

  7. H. Deng, S. Kang, J. Ma, et al., Appl. Catal. B 239, 214 (2018).

    Article  CAS  Google Scholar 

  8. J. Wang, H. Zhao, J. Song, et al., Microporous Mesoporous Mater. 9, 726 (2019).

    CAS  Google Scholar 

  9. H. Deng, Y. Lu, T. Pan, et al., Appl. Catal. B 320, 121955 (2023).

  10. X. Li, Y. Niu, C. Zhang, et al., ChemCatChem 13, 4223 (2021).

    Article  CAS  Google Scholar 

  11. Z. Ye, J. M. Giraudon, N. Nuns, et al., Appl. Catal. B 223, 154 (2018).

    Article  CAS  Google Scholar 

  12. J. R. Li, W. P. Zhang, C. Li, et al., Appl. Surf. Sci. 550, 149179 (2021).

  13. J. Chen, X. Chen, X. Chen, et al., Appl. Catal. B 224, 825 (2018).

    Article  CAS  Google Scholar 

  14. J. R. Li, W. P. Zhang, C. Li, et al., J. Colloid Interface Sci. 591, 396 (2021).

    Article  ADS  PubMed  CAS  Google Scholar 

  15. P. Wang, J. Wang, X. An, et al., Appl. Catal. B 282, 119560 (2021).

  16. F. Arena, G. Trunfio, J. Negro, et al., Mater. Res. Bull. 43, 539 (2008).

    Article  CAS  Google Scholar 

  17. Y. Wu, Y. Zhang, M. Liu, et al., Catal. Today 153, 170 (2010).

    Article  CAS  Google Scholar 

  18. Z. **ao, J. Yang, R. Ren, et al., Chemosphere 247, 125812 (2020).

  19. J. Chen, X. Chen, Z. Xu, et al., Chem. Sel. 1, 4052 (2016).

    ADS  CAS  Google Scholar 

  20. S. C. Kim and W. G. Shim, Appl. Catal. B 98, 180 (2010).

    Article  CAS  Google Scholar 

  21. Z. Hu, Z. Tang, T. Zhang, et al., Ind. Eng. Chem. Res. 61, 4803 (2022).

    Article  CAS  Google Scholar 

  22. Q. Zhao, Y. Zheng, C. Song, et al., Appl. Catal. B 265, 118552 (2020).

  23. S. Todorova, J. L. Blin, A. Naydenov, et al., Catal. Today 357, 602 (2020).

    Article  CAS  Google Scholar 

  24. X. Li, J. Zheng, S. Liu, et al., J. Colloid Interface Sci. 555, 667 (2019).

    Article  ADS  PubMed  CAS  Google Scholar 

  25. V. P. Santos, M. F. R. Pereira, J. J. M. Órfão, et al., Appl. Catal. B 99, 353 (2010).

    Article  CAS  Google Scholar 

  26. H. Sun, Z. Liu, S. Chen, et al., Chem. Eng. J. 270, 58 (2015).

    Article  CAS  Google Scholar 

  27. X. Zeng, B. Li, R. Liu, et al., Chem. Eng. J. 384, 123362 (2020).

  28. X. Jiang, W. Xu, S. Lai, et al., RSC Adv. 9, 6533 (2019).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  29. J. Chen, X. Chen, W. Xu, et al., Chem. Eng. J. 330, 281 (2017).

    Article  CAS  Google Scholar 

  30. N. Huang, Z. Qu, C. Dong, et al., Appl. Catal. Gen. 560, 195 (2018).

    Article  CAS  Google Scholar 

  31. S. Dissanayake, N. Wasalathanthri, A. Shirazi Amin, et al., Appl. Catal. Gen. 590, 117366 (2020).

  32. Y. Sun, P. Lv, et al., Chem. Commun. 47, 11279 (2011).

    Article  CAS  Google Scholar 

Download references

Funding

The work was financed by Chongqing science and Technology Bureau project “Development and application of high-performance honeycomb ceramic materials for industrial volatile organic compounds purification” (cstc2020jscx-msxmX0182).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **bo Wang or Ruixiang Qin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhao, S., Qin, R. et al. Highly Active and Highly Toxic Resistant of CoMnOX for Catalytic Oxidation of Toluene. Russ. J. Phys. Chem. 97, 3219–3226 (2023). https://doi.org/10.1134/S0036024424010114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024424010114

Keywords:

Navigation