Log in

Fenton-Like Oxidation Systems for Destruction of Azo Dyes in Aqueous Solutions

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The kinetic regularities of degradation of the azo dye methyl orange (MO) in photoinitiated oxidizing systems have been studied using a xenon lamp (UV–Vis) as a source of quasi-solar radiation. According to the efficiency and rate of dye destruction, the considered oxidizing systems can be arranged in the following series: {UV–Vis} < {UV–Vis/S2O\(_{8}^{{2 - }}\)} < {S2O\(_{8}^{{2 - }}\)/Fe0} < {UV–Vis/S2O\(_{8}^{{2 - }}\)/Fe0} < {UV–Vis/S2O\(_{8}^{{2 - }}\)/Fe2+}. It has been established that in photoinitiated Fenton-like oxidizing systems there is not only complete conversion of MO but also its deep mineralization in aqueous solution; a decrease in the content of total organic carbon reaches 60%. In this case, the specific catalytic activity of iron ions in the combined system {UV–Vis/S2O\(_{8}^{{2 - }}\)/Fe0} is much higher than in {UV–Vis/S2O\(_{8}^{{2 - }}\)/Fe2+}. Using inhibitors of radical reactions, it has been proved that in the combined system {UV–Vis/S2O\(_{8}^{{2 - }}\)/Fe0} both hydroxyl and sulfate anion radicals take part in oxidative degradation. An inhibitory influence of anions (bicarbonates, chlorides, nitrates, and sulfates) and natural dissolved organic matter (Suwanee River 2R101N) on the process of mineralization of total organic carbon during oxidative destruction of MO in the combined system {UV–Vis/S2O\(_{8}^{{2 - }}\)/Fe0} has been found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Han, H. Wang, W. **, et al., J. Environ. Sci. 128, 181 (2023). https://doi.org/10.1016/j.jes.2022.07.037

    Article  CAS  Google Scholar 

  2. L. Li, X. Yuan, Zh. Zhou, et al., J. Clean. Prod. 372, 133420 (2022). https://doi.org/10.1016/j.jclepro.2022.133420

  3. B. Ramos, L. B. Ferreira, P. H. Palharim, et al., Chem. Eng. J. Adv. 14, 100473 (2023). https://doi.org/10.1016/j.ceja.2023.100473

  4. S. Giannakis, S. Samoili, and J. Rodríguez-Chueca, Curr. Opin. Green Sustain. Chem. 29, 100456 (2021). https://doi.org/10.1016/j.cogsc.2021.100456

  5. K. G. Linden and M. Mohseni, Compr. Water Q. Purif. 2, 148 (2014).

    Article  Google Scholar 

  6. A. V. Karim, Y. Jiao, M. Zhou, and P. Nidheesh, Chemosphere 265, 129057 (2021). https://doi.org/10.1016/j.chemosphere.2020.129057

  7. F. Ghanbari, M. Moradi, and F. Gohari, J. Water Process. Eng. 9, 22 (2016). https://doi.org/10.1016/j.jwpe.2015.11.011

    Article  Google Scholar 

  8. W. Wang, M. Chen, D. Wang, et al., Sci. Total Environ. 772, 145522 (2021). https://doi.org/10.1016/j.scitotenv.2021.145522

  9. P. Zawadzki, Curr. Opin. Green Sustain. Chem. 37, 100837 (2022). https://doi.org/10.1016/j.coche.2022.100837

  10. Y. Gao, P. Champagne, and D. Blair, Water Sci. Technol. 81, 853 (2020). https://doi.org/10.2166/wst.2020.190

    Article  PubMed  CAS  Google Scholar 

  11. J. A. Khan, X. He, and H. M. Khan, Chem. Eng. J. 218, 376 (2013). https://doi.org/10.1016/j.cej.2012.12.055

    Article  CAS  Google Scholar 

  12. M. M. Ahmed and S. Chiron, Water Res. 48, 229 (2014). https://doi.org/10.1016/j.watres.2013.09.033

    Article  PubMed  CAS  Google Scholar 

  13. J. Yang, M. Zhu, and D. D. Dionysiou, Water Res. 189, 116627 (2021). https://doi.org/10.1016/j.watres.2020.116627

  14. I. P. Pozdnyakov, E. M. Glebov, V. F. Plyusnin, et al., Mendeleev Commun. 10, 185 (2020). https://doi.org/10.1070/MC2000v010n05ABEH001316

    Article  Google Scholar 

  15. M. R. Sizykh and A. A. Batoeva, Russ. J. Phys. Chem. A 93, 2349 (2019). https://doi.org/10.1134/S003602441912029X

    Article  CAS  Google Scholar 

  16. A. Ioannidi, Z. Frontistis, and D. Mantzavinos, J. Environ. Chem. Eng. 6, 2992 (2018). https://doi.org/10.1016/j.jece.2018.04.049

    Article  CAS  Google Scholar 

  17. I. Rivas-Zaballos, L. Romero-Martínez, and I. Moreno-Garrido, J. Water Process. Eng. 51, 103361 (2023). https://doi.org/10.1016/j.jwpe.2022.103361

  18. A. Omri, W. Hamza, and M. Benzina, J. Photochem. Photobiol., A 393, 112444 (2020). .https://doi.org/10.1016/j.jphotochem.2020.112444

  19. P. Li, Z. Liu, X. Wang, et al., Chemosphere 180, 100 (2017). https://doi.org/10.1016/j.chemosphere.2017.04.019

    Article  PubMed  CAS  Google Scholar 

  20. L. Zhang, C. **ao, Z. Li, et al., Appl. Surf. Sci. 618, 156595 (2023). https://doi.org/10.1016/j.apsusc.2023.156595

  21. J. Wang and S. Wang, Chem. Eng. J. 411, 128392 (2021). https://doi.org/10.1016/j.cej.2020.128392

  22. M. S. Khandarkhaeva, A. A. Batoeva, D. G. Aseev, and M. R. Sizykh, Russ. J. Appl. Chem. 88, 1605 (2015).

    Article  CAS  Google Scholar 

  23. H. Mengqi, W. Hui, and J. Wei, J. Environ. Sci. (China) 128, 181 (2023). https://doi.org/10.1016/j.jes.2022.07.037

    Article  CAS  Google Scholar 

  24. X. Jiang, Y. Wu, P. Wang, et al., Environ. Sci. Pollut. Res. 20, 4947 (2013). https://doi.org/10.1007/s11356-013-1468-5

    Article  CAS  Google Scholar 

  25. S. Rodriguez, A. Santos, and A. Romero, Chem. Eng. J. 318, 197 (2017). https://doi.org/10.1016/j.cej.2016.06.057

    Article  CAS  Google Scholar 

  26. S.-Y. Oh, S.-G. Kang, and P. C. Chiu, Sci. Total Environ. 408, 3464 (2010). https://doi.org/10.1016/j.scitotenv.2010.04.032

    Article  PubMed  CAS  Google Scholar 

  27. C. Liang and Y. Y. Guo, Environ. Sci. Technol. 44, 8203 (2010). https://doi.org/10.1021/es903411a

    Article  PubMed  CAS  Google Scholar 

  28. I. Michael-Kordatou, M. Iacovou, Z. Frontistis, et al., Water Res. 85, 346 (2015). https://doi.org/10.1016/j.watres.2015.08.050

    Article  PubMed  CAS  Google Scholar 

  29. B. Li, L. Li, K. Lin, et al., Ultrason. Sonochem. 20, 855 (2013). https://doi.org/10.1016/j.ultsonch.2012.11.014

    Article  PubMed  CAS  Google Scholar 

  30. J. M. Joseph, H. Destaillats, N. M. Hung, and M. R. Hoffman, J. Phys. Chem. A 104, 301 (2000). https://doi.org/10.1021/jp992354m

    Article  CAS  Google Scholar 

  31. D. Ge, Z. Zeng, M. Arowo, and H. Zou, Chemosphere 146, 413 (2016). https://doi.org/10.1016/j.chemosphere.2015.12.058

    Article  PubMed  CAS  Google Scholar 

  32. Methodology for rapid determination of the integral chemical toxicity of drinking, surface, ground, sewage and treated wastewater using the “Ecolum” bacterial test, Guidelines no. 01.021-07 (Fed. Tsentr Gigieny Epidemiol. Rospotrebnadzora, Moscow, 2007).

  33. L. Wang, Q. Zhang, B. Chen, et al., Water Res. 174, 115605 (2020). https://doi.org/10.1016/j.watres.2020.115605

  34. F. Ghanbari, M. Riahi, B. Kakavandi, et al., J. Water Process. Eng. 36, 101321 (2020). https://doi.org/10.1016/j.jwpe.2020.101321

  35. M. R. Sizykh, A. A. Batoeva, and V. A. Munkoeva, Russ. J. Phys. Chem. A 95, 1230 (2021). https://doi.org/10.1134/S0036024421060236

    Article  CAS  Google Scholar 

  36. J. Wang and S. Wang, Chem. Eng. J. 411, 128392 (2021). https://doi.org/10.1016/j.cej.2020.128392

  37. G.-D. Fang, D. D. Dionysiou, Y. Wang, et al., J. Hazard. Mater. 227–228, 394 (2012). https://doi.org/10.1016/j.jhazmat.2012.05.074

    Article  PubMed  CAS  Google Scholar 

  38. C. Luo, J. Ma, J. Jiang, et al., Water Res. 80, 99 (2015). https://doi.org/10.1016/j.watres.2015.05.019

    Article  PubMed  CAS  Google Scholar 

  39. X.-Y. Yu, and J. R. Barker, J. Phys. Chem. A 107, 1313 (2003). https://doi.org/10.1021/jp0266648

    Article  CAS  Google Scholar 

  40. S. Yang, X. Zhang, J. Tang, and A. Zhang, J. Environ. Chem. Eng. 10, 108806 (2022). https://doi.org/10.1016/j.jece.2022.108806

  41. J. Fan, Y. Guo, J. Wang, and M. Fan, J. Hazard. Mater. 166, 904 (2009). https://doi.org/10.1016/j.jhazmat.2008.11.091

    Article  PubMed  CAS  Google Scholar 

  42. A. A. Basfar, K. A. Mohamed, A. J. Al-Abduly, and A. A. Al-Shahrani, Ecotoxicol. Environ. Saf. 72, 948 (2009). https://doi.org/10.1016/j.ecoenv.2008.05.006

    Article  PubMed  CAS  Google Scholar 

  43. J. R. Garbin, D. M. B. P. Milori, M. L. Simões, W. T. da Silva, et al., Chemosphere 66, 1692 (2007). https://doi.org/10.1016/j.chemosphere.2006.07.017

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

The study was carried out within the Basic Research Program of the Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences FWSU-2021-0006, using the equipment of the CCU of BINM SB RAS (Ulan-Ude).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Batoeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sizykh, M.R., Batoeva, A.A. Fenton-Like Oxidation Systems for Destruction of Azo Dyes in Aqueous Solutions. Russ. J. Phys. Chem. 97, 2672–2681 (2023). https://doi.org/10.1134/S0036024423120270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423120270

Keywords:

Navigation