Log in

Photoinduced Destruction of Complex Cyanides Using Quasi-Monochromatic UVC Radiation of a KrCl Excilamp (222 nm)

  • PHOTOCHEMISTRY, MAGNETOCHEMISTRY, MECHANOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The kinetic regularities of photochemical oxidation of stable complex cyanides (hexacyanoferrates) with persulfate (oxidizing system {UV/S2O\(_{8}^{{2 - }}\)}) and hydrogen peroxide (oxidizing system {UV/H2O2}) under the influence of quasi-monochromatic UVC radiation from a KrCl excilamp (222 nm) have been studied. According to the efficiency and rate of the destruction of the target compound, the oxidizing systems under study can be arranged in the following series: {UV/S2O\(_{8}^{{2 - }}\)} > {UV/H2O2} > {UV}. The effective destruction of hexacyanoferrates at micromolar concentrations (≤47 μM) to nontoxic and biodegradable compounds in the combined {UV/S2O\(_{8}^{{2 - }}\)} system is due to the high oxidizing ability of reactive oxygen species formed as a result of persulfate photolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Y. Deng and R. Zhao, Curr. Pollut. Rep. 1, 167 (2015). https://doi.org/10.1007/s40726-015-0015-z

    Article  CAS  Google Scholar 

  2. S. Giannakis, K. Y. A. Lin, and F. Ghanbari, Chem. Eng. J. 406 (2021). https://doi.org/10.1016/j.cej.2020.127083

  3. O. M. Rodriguez-Narvaez, J. M. Peralta-Hernez, A. Goonetilleke, et al., Chem. Eng. J. 323, 361 (2017). https://doi.org/10.1016/j.cej.2017.04.106

    Article  CAS  Google Scholar 

  4. Y. Yang, Y. S. Ok, K.-H. Kim, et al., Sci. Total Environ. 596–597, 303 (2017). https://doi.org/10.1016/j.scitotenv.2017.04.102

    Article  CAS  PubMed  Google Scholar 

  5. Q. Yang, Y. Ma, F. Chen, et al., Chem. Eng. J. 378, 122149 (2019). https://doi.org/10.1016/j.cej.2019.122149

  6. W. Huang, A. Bianco, M. Brigante, et al., J. Hazard. Mater. 347, 279 (2018). https://doi.org/10.1016/j.jhazmat.2018.01.006

    Article  CAS  PubMed  Google Scholar 

  7. S. Malato, P. Fernez-Ibanez, M. Maldonado, et al., Catal. Today 147, 1 (2009). https://doi.org/10.1016/j.cattod.2009.06.018

    Article  CAS  Google Scholar 

  8. O. Tsydenova, V. Batoev, and A. Batoeva, Int. J. Environ. Res. Publ. Health 12, 9542 (2015). https://doi.org/10.3390/ijerph120809542

    Article  CAS  Google Scholar 

  9. A. M. Boichenko, M. I. Lomaev, A. N. Panchenko, et al., Ultraviolet and Vacuum-Ultraviolet Excilamps: Physics, Technology, and Applications (STT, Tomsk, 2011) [in Russian].

    Google Scholar 

  10. E. Sosnin, S. Avdeev, V. Tarasenko, V. S. Skakun, and D. V. Schitz, Instrum. Exp. Tech. 58, 309 (2015). https://doi.org/10.1134/S0020441215030124

    Article  Google Scholar 

  11. S. Popova, G. Matafonova, and V. Batoev, Ecotoxicol. Environ. Saf. 169, 169 (2019). https://doi.org/10.1016/j.ecoenv.2018.11.014

    Article  CAS  PubMed  Google Scholar 

  12. M. Sizykh, A. Batoeva, and O. Tsydenova, Clean-Soil, Air, Water. 46, 1700187 (2018). https://doi.org/10.1002/clen.201700187

  13. M. Sizykh, A. Batoeva, and G. Matafonova, J. Photochem. Photobiol., A 436, 114357 (2023). https://doi.org/10.1016/j.jphotochem.2022.114357

  14. G. Matafonova and V. Batoev, Chemosphere 89, 637 (2012). https://doi.org/10.1016/j.chemosphere.2012.06.012

    Article  CAS  PubMed  Google Scholar 

  15. S. L. Budaev, A. A. Batoeva, M. S. Khandarkhaeva, and D. G. Aseev, Russ. J. Phys. Chem. A 91, 604 (2017). https://doi.org/10.1134/S0036024417030049

    Article  CAS  Google Scholar 

  16. M. M. Botz, T. I. Mudder, and A. U. Akcil, in Gold Ore Processing, Ed. by M. D. Adams (Elsevier, Amsterdam, 2016), Chap. 35, p. 619. https://doi.org/10.1016/B978-0-444-63658-4.00035-9

    Book  Google Scholar 

  17. N. Kuyucak and A. Akcil, Miner. Eng. 50–51, 13 (2013). https://doi.org/10.1016/j.mineng.2013.05.027

    Article  CAS  Google Scholar 

  18. S. Canonica, L. Meunier, and U. von Gunten, Water Res. 42, 121 (2008). https://doi.org/10.1016/j.watres.2007.07.026

    Article  CAS  PubMed  Google Scholar 

  19. PND F 14.1: 2.164-2000: Quantitative chemical analysis of water. Methodology for measuring mass concentrations of hexacyanoferrates in samples of natural and waste waters using the photometric method (2009).

  20. PND F 14.1: 2.56-96: Quantitative chemical analysis of water. Method for measuring the mass concentration of cyanide in natural and waste waters using the photometric method with pyridine and barbituric acid (2015).

  21. J. Yang, M. Zhu, and D. D. Dionysiou, Water Res. 189, 116627 (2021). https://doi.org/10.1016/j.watres.2020.116627

  22. F. L. Rosario-Ortiz, E. C. Wert, and S. A. Snyder, Water Res. 44, 1440 (2010). https://doi.org/10.1016/j.watres.2009.10.031

    Article  CAS  PubMed  Google Scholar 

  23. J. Sharma, I. M. Mishra, and V. Kumar, J. Environ. Manage. 156, 266 (2015). https://doi.org/10.1016/j.jenvman.2015.03.048

    Article  CAS  PubMed  Google Scholar 

  24. S. Yang, P. Wang, X. Yang, et al., J. Hazard. Mater. 179, 552 (2010). https://doi.org/10.1016/j.jhazmat.2010.03.039

    Article  CAS  PubMed  Google Scholar 

  25. P. G. Anipsitakis and D. Dionysiou, Appl. Catal. B 54, 155 (2004). https://doi.org/10.1016/j.apcatb.2004.05.025

    Article  CAS  Google Scholar 

  26. F. Ghanbari and M. Moradi, Chem. Eng. J. 310 (2017). https://doi.org/10.1016/j.cej.2016.10.064

  27. O. S. Furman, A. L. Teel, and R. J. Watts, Environ. Sci. Technol. 44, 6423 (2010). https://doi.org/10.1021/es1013714

    Article  CAS  PubMed  Google Scholar 

  28. H. Kusic, I. Peternel, S. Ukic, et al., Chem. Eng. J. 172, 109 (2011). https://doi.org/10.1016/j.cej.2011.05.076

    Article  CAS  Google Scholar 

  29. P. Neta, R. Huie, and B. A. Ross, J. Phys. Chem. Ref. Data 17, 1027 (1988). https://doi.org/10.1063/1.555808

    Article  CAS  Google Scholar 

  30. H. Ibargüen-López, B. López-Balanta, L. Betancourt-Buitrago, et al., J. Environ. Chem. Eng. 9, 106233 (2021). https://doi.org/10.1016/j.jece.2021.106233

  31. X. Duan, X. Niu, J. Gao, et al., Curr. Opin. Chem. Eng. 38, 100867 (2022). https://doi.org/10.1016/j.coche.2022.100867

  32. Y.-M. Lee, G. Lee, and K.-D. Zoh, J. Hazard. Mater. 403, 123591 (2021). https://doi.org/10.1016/j.jhazmat.2020.123591

  33. L. C. Clifton and R. Huie, Int. J. Chem. Kinet. 21, 677 (1989). https://doi.org/10.1002/kin.550210807

    Article  CAS  Google Scholar 

  34. G. V. Buxton, C. L. Greenstock, W. P. Helman, et al., J. Phys. Chem. Ref. Data 17, 513 (1988). https://doi.org/10.1063/1.555805

    Article  CAS  Google Scholar 

  35. S.-N. Nam, S.-K. Han, J.-W. Kang, et al., Ultrason. Sonochem. 10, 139 (2003). https://doi.org/10.1016/S1350-4177(03)00085-3

    Article  CAS  PubMed  Google Scholar 

  36. S. A. Popova, G. G. Matafonova, and V. B. Batoev, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 62, 118 (2019). https://doi.org/10.6060/ivkkt.20196205.5819

    Article  CAS  Google Scholar 

  37. V. A. Svetlichnyi, R. T. Kuznetsova, T. N. Kopylova, et al., Opt. Atmos. Okeana 14, 38 (2001).

    CAS  Google Scholar 

  38. C. Chen, Y. Du, Y. Zhou, et al., Water Res. 194, 116914 (2021). https://doi.org/10.1016/j.watres.2021.116914

  39. B. Sun, Y. Zheng, C. Shang, et al., J. Hazard. Mater. 430, 128450 (2022). https://doi.org/10.1016/j.jhazmat.2022.128450

Download references

Funding

This study was performed under the Basic Research Program (no. FWSU-2021-0006) of the Baikal Institute of Nature Management (BINM), Siberian Branch, Russian Academy of Sciences using the equipment of the Multiaccess Center of BINM (CCU BINM SB RAS (Ulan-Ude, Russia)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Batoeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batoeva, A.A., Tsybikova, B.A. & Sizykh, M.R. Photoinduced Destruction of Complex Cyanides Using Quasi-Monochromatic UVC Radiation of a KrCl Excilamp (222 nm). Russ. J. Phys. Chem. 97, 2855–2860 (2023). https://doi.org/10.1134/S003602442312004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442312004X

Keywords:

Navigation