Log in

Saturation Line of Ethane in the Renormalization Group Theory Using the Clapeyron–Clausius Equation

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A system of mutually consistent equations for ethane is developed that describes pressure \({{p}_{s}}\), vapor density \({{\rho }^{ - }}\), liquid density \({{\rho }^{ + }}\), derivative \(p_{s}^{'}(T)\), and heat of vaporization \(r\) on the phase equilibrium line in the range of the triple point to the critical point. The system also includes apparent heat of vaporization \(r\text{*}\), which is associated with heat of vaporization \(r\): \(r = r\text{*}{\kern 1pt} (1 - {{\rho }^{ - }}{\text{/}}{{\rho }^{ + }})\). It is established on the basis of the thermodynamic analysis that (1) the condition of average diameter \({{d}_{f}} > 0\) is fulfilled at each point of the saturation line except for the critical point, at which \({{d}_{f}} = 0\), and (2) the average diameter is reduced sharply in the interval of \({{T}_{{{\text{tr}}}}} < T < {{T}_{c}}\). The system of mutually consistent equations reproduces the phase equilibrium line of ethane within the experimental uncertainty data of Funke et al. (2002) in the range of the triple point (\({{p}_{{{\text{tr}}}}}\), \({{\rho }_{{{\text{tr}}}}}\), \({{T}_{{{\text{tr}}}}}\)) to the critical point (\({{p}_{c}}\), \({{\rho }_{c}}\), \({{T}_{c}}\)). It also reproduces features of the critical point in accordance with the renormalization group (RG) theory developed by Zhou et al. (2022) for a system of asymmetric systems. Based on the Clausius–Clapeyron equation and renormalization group theory, an expression is obtained for the apparent heat of vaporization. Analysis of average diameter \({{d}_{f}} = {{D}_{{2\beta }}}{{\tau }^{{2\beta }}} + {{D}_{{1 - \alpha }}}{{\tau }^{{1 - \alpha }}} + {{D}_{\tau }}\tau \) for two groups of complexes shows that (a) \({{D}_{{2\beta }}} = 0.1\), \(\eta = {{D}_{{2\beta }}}{\text{/}}{{D}_{{1 - \alpha }}} = - 0.14\), and \(\phi = {{D}_{{2\beta }}}{\text{/}}{{D}_{\tau }} = 0.13\), and (b) \({{D}_{{2\beta }}} = 0.048\), \(\eta = - 0.18\), and \(\phi = 0.12\), which correspond to values \({{D}_{{2\beta }}}\), \(\eta \), and \(\phi \) obtained by Wang et al. (2013) in the RG theory and the modeling of experimental data for ethane on the saturation line. Based on the proposed system of mutually consistent equations, average diameter \({{d}_{f}}\)of ethane is found for complexes (a) and (b), and it is established that the average diameter determined on the basis of data by Funke et al. (2002) is given most accurately by the system of mutually consistent equations in the range of \({{T}_{{{\text{tr}}}}}\) to \({{T}_{c}}\) with parameters \({{D}_{{2\beta }}} = 0.0039\), \(\eta = - 0.14\), and \(\phi = 0.13\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Funke, R. Kleinrahm, and W. Wagner, J. Chem. Thermodyn. 34, 2017 (2002).

    Article  CAS  Google Scholar 

  2. T. S. Brown, A. J. Kidnay, and E. D. Sloan, Fluid Phase Equilib. 40, 169 (1988).

    Article  CAS  Google Scholar 

  3. D. A. Barclay, J. L. Flebbe, and D. B. Manley, J. Chem. Eng. Data 27, 135 (1982).

    Article  CAS  Google Scholar 

  4. G. C. Straty and R. Tsumura, J. Res. NBS 80A, 35 (1976).

    Article  CAS  Google Scholar 

  5. R. J. Gugnoni, J. W. Eldridge, V. C. Okay, and T. J. Lee, AIChE J. 20, 357 (1974).

    Article  CAS  Google Scholar 

  6. D. R. Douslin and R. H. Harrison, J. Chem. Thermodyn. 5, 491 (1973).

    Article  CAS  Google Scholar 

  7. L. C. Kahre, J. Chem. Eng. Data 18, 267 (1973).

    Article  CAS  Google Scholar 

  8. G. A. Pope, Ph. D. Thesis (Rice Univ., Houston, 1972).

  9. C.-H. Chui and F. B. Canfield, Trans. Faraday Soc. 67, 2933 (1971).

    Article  CAS  Google Scholar 

  10. W. A. van Hook, J. Chem. Phys. 44, 234 (1966).

    Article  CAS  Google Scholar 

  11. J. A. Beattie, C. Hadlock, and N. Poffenberger, J. Chem. Phys. 3, 93 (1935).

    Article  CAS  Google Scholar 

  12. F. Porter, J. Am. Chem. Soc. 48, 2055 (1926).

    Article  CAS  Google Scholar 

  13. O. Maass and C. E. Wrigh, J. Am. Chem. Soc. 43, 1098 (1921).

    Article  CAS  Google Scholar 

  14. M. W. Pestak, R. E. Goldstein, M. H. W. Chan, et al., Phys. Rev. B 36, 599 (1987).

    Article  CAS  Google Scholar 

  15. P. Sliwinski, Z. Phys. Chem. Neue Folge 63, 263 (1969).

    Article  CAS  Google Scholar 

  16. K. Shinsaka, N. Gee, and G. R. Freeman, J. Chem. Thermodyn. 17, 1111 (1985).

    Article  CAS  Google Scholar 

  17. J. E. Orrit and J. M. Laupretre, Adv. Cryog. Eng. 23, 573 (1978).

    Google Scholar 

  18. W. M. Haynes and M. J. Hiza, J. Chem. Thermodyn. 9, 179 (1977).

    Article  CAS  Google Scholar 

  19. C. R. McClune, Cryogenics 16, 289 (1976).

    Article  CAS  Google Scholar 

  20. A. J. Leadbetter, D. J. Taylor, and B. Vincent, Can. J. Chem. 42, 2930 (1964).

    Article  CAS  Google Scholar 

  21. S. G. Mason, S. N. Naldrett, and O. A. Maass, Can. J. Res. 18, 103 (1940).

    Article  Google Scholar 

  22. J. A. White, Fluid Phase Equilib. 75, 53 (1992).

    Article  CAS  Google Scholar 

  23. L. W. Salvino and J. A. White, J. Chem. Phys. 96, 4559 (1992).

    Article  CAS  Google Scholar 

  24. L. Wang, W. Zhao, L. Wu, et al., J. Chem. Phys. 139, 124103 (2013).

  25. Z. Zhou, J. Cai, and Y. Hu, Mol. Phys. 120, e1987541 (2022).

  26. J. Yata, M. Hori, M. Niki, et al., Fluid Phase Equilib. 174, 221 (2000).

    Article  CAS  Google Scholar 

  27. V. S. Vorob’ev, E. E. Ustyuzhanin, V. F. Ochkov, V. V. Shishakov, Aung Tu Ra Tun, V. A. Rykov, and S. V. Rykov, High Temp. 58, 333 (2020).

    Article  Google Scholar 

  28. S. V. Rykov, I. V. Kudryavtseva, V. A. Rykov, et al., J. Phys.: Conf. Ser. 1147, 012017 (2019).

  29. S. V. Rykov, I. V. Kudryavtseva, V. A. Rykov, et al., Vestn. Mezhdun. Akad. Kholoda, No. 4, 76 (2022).

  30. D. Bucker and W. Wagner, J. Phys. Chem. Ref. Data 35, 205 (2006).

    Article  CAS  Google Scholar 

  31. Sh. Ma, Modern Theory of Critical Phenomena (Benjamin, Reading, MA, 1976).

    Google Scholar 

  32. J. Weiner, K. H. Langley, and N. C. Ford, Phys. Rev. Lett. 32, 879 (1974).

    Article  CAS  Google Scholar 

  33. G. Forsythe, M. Malcolm, and C. Moler, Computer Methods for Mathematical Computations (Prentice-Hall, Engle Wood Cliffs, 1977).

  34. A. D. Kozlov, Yu. V. Mamonov, M. D. Rogovin, et al., GSSSD 196-01 (Standartinform, Moscow, 2008) [in Russian].

  35. V. A. Kolobaev, S. V. Rykov, I. V. Kudryavtseva, et al., Izmerit. Tekh., No. 2, 9 (2021).

  36. G. V. Solov’ev, G. I. Sukhanin, N. N. Stolyarov, and Yu. R. Chashkin, Kholod. Tekh., No. 6, 30 (1978).

  37. V. S. Vorobev, V. F. Ochkov, V. A. Rykov, et al., J. Phys.: Conf. Ser. 1147, 012016 (2019).

  38. S. V. Rykov, I. V. Kudriavtseva, A. V. Sverdlov, and V. A. Rykov, AIP Conf. Proc. 2285, 030070 (2020).

  39. T. Miyazaki, A. V. Hejmadi, and J. E. Powers, J. Chem. Thermodyn. 12, 105 (1980).

    Article  CAS  Google Scholar 

  40. L. I. Dana, A. C. Jenkins, J. N. Burdick, and R. C. Timm, Refrig. Eng. 12, 387 (1926).

    CAS  Google Scholar 

  41. R. Wiebe, K. H. Hubbard, and M. J. Brevoort, J. Am. Chem. Soc. 52, 611 (1930).

    Article  CAS  Google Scholar 

  42. H. M. Roder, J. Res. Natl. Bur. Stand., Sect. A 80, 739 (1976).

    Google Scholar 

  43. R. K. Witt and J. D. Kemp, J. Am. Chem. Soc. 59, 273 (1937).

    Article  CAS  Google Scholar 

  44. E. E. Shpil’rain, Teplofiz. Vys. Temp. 4, 450 (1966).

    Google Scholar 

  45. A. V. Kletskii, Extended Abstract of Doctoral (Tech. Sci.) Dissertation (LTIKhP, Leningrad, 1978) [in Russian].

  46. R. A. Khairulin and S. V. Stankus, Russ. J. Phys. Chem. A 95, 677 (2021).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Rykov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rykov, S.V., Kudryavtseva, I.V. & Rykov, S.A. Saturation Line of Ethane in the Renormalization Group Theory Using the Clapeyron–Clausius Equation. Russ. J. Phys. Chem. 97, 2367–2378 (2023). https://doi.org/10.1134/S0036024423110286

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423110286

Keywords:

Navigation