Log in

Stability, Electronic and Optical Properties of Irida-Naphthalene and Irida-Azulene: A Computational Investigation

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this work, computational investigation of the stability, structural and electronic properties of irida-naphthalene and irida-azulene molecules were reported. Frontier orbitals energy values were used to computation of hardness, electrophilicity and electrophilicity values of the compounds. Variations of Ir–C and Ir–P bond distances of the studied molecules were illustrated with quantum theory of atoms in molecules (QTAIM) and intrinsic bond strength index (IBSI). Static isotropic and frequency-dependent polarizability values of these molecules were computed. The non-linear optical (NLO) behavior of these complexes studied by calculation of Static and frequency-dependent first hyperpolarizability values of the molecules. Electron density values at ring critical point (RCP) were used for studying of aromaticity in these complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. C. Tang, Y. Zhao, J. Wu, Z. Chen, L. L. Liu, Y.-Z. Tan, J. Zhu, and H. **a, J. Am. Chem. Soc. 143, 15587 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. J. Chen and G. Jia, Coord. Chem. Rev. 257, 2491 (2013).

    Article  CAS  Google Scholar 

  3. G. He, J. Zhu, W. Y. Hung, T. B. Wen, H. H. Y. Sung, I. D. Williams, Z. Lin, and G. Jia, Angew. Chem., Int. Ed. 46, 9065 (2007).

    Article  CAS  Google Scholar 

  4. B. Liu, H. **e, H. Wang, L. Wu, Q. Zhao, J. Chen, T. B. Wen, and Z. Cao, Angew. Chem., Int. Ed. 48, 5461 (2009).

    Article  CAS  Google Scholar 

  5. M. Paneque, C. M. Posadas, M. L. Poved, N. Rendón, L. L. Santos, E. Alvarez, V. Salazar, K. Mereiter, and E. Oñate, Organometallics 26, 3403 (2007).

    Article  CAS  Google Scholar 

  6. M. Paneque, C. M. Posadas, M. L. Poveda, N. Rendón, V. Salazar, E. Oñate, and K. Mereiter, J. Am. Chem. Soc. 125, 9898 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. C. W. Landorf and M. M. Haley, Angew. Chem. Int. Ed. 45, 3914 (2006).

    Article  CAS  Google Scholar 

  8. C. Y. Tang Zhao, J. Wu, Z. Chen, L. L. Liu, Y.-Z. Tan, J. Zhu, and H. **a, J. Am. Chem. Soc. 143, 15587 (2021).

    Article  Google Scholar 

  9. X. Jia, Q. Zhou, J. Chen, L. Zhang, and Z.-N. Chen, J. Phys. Chem. A 124, 7071 (2020).

    Article  CAS  PubMed  Google Scholar 

  10. D. Arias-Olivares, A. Becerra-Buitrago, L. C. García-Sánchez, and R. Islas, ACS Omega 6, 9887 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. R. Ghiasi, Struct. Chem. 25 (2014).

  12. R. Ghiasi and A. Morasali, J. Theor. Comput. Chem. 13 (2014).

  13. J. Fan, X. Wang, and J. Zhu, Organometallics 33, 2336 (2014).

    Article  CAS  Google Scholar 

  14. E. Heilbronner, P. A. Plattner, and K. Wieland, Experientia 3, 70 (1947).

    Article  CAS  Google Scholar 

  15. L. T. Scott, Acc. Chem. Res. 15, 52 (1982).

    Article  CAS  Google Scholar 

  16. R. W. Alder and G. Whittaker, J. Chem. Soc., Perkin Trans. 2, 714 (1975).

    Article  Google Scholar 

  17. R. W. Alder and C. Wilshire, J. Chem. Soc., Perkin Trans. 2, 1464 (1975).

    Article  Google Scholar 

  18. R. W. Alder, R. W. Whiteside, G. Whittaker, and C. Wilshire, J. Am. Chem. Soc. 101, 629 (1979).

    Article  CAS  Google Scholar 

  19. J. Becker, C. Wentrup, E. Katz, and K. P. Zeller, J. Am. Chem. Soc. 102, 5110 (1980).

    Article  CAS  Google Scholar 

  20. K. P. Zeller and C. Wentrup, Z. Naturforsch., B 368, 852 (1981).

  21. P. W. Fowler, D. E. Manolopoulos, and R. P. Ryan, Carbon 30, 1235 (1992).

    Article  CAS  Google Scholar 

  22. R. W. Alder and G. Whittaker, J. Chem. Soc., Perkin Trans. 2, 712 (1975).

    Article  Google Scholar 

  23. B. R. Eggen, M. I. Heggie, G. Jungnickel, C. D. Latham, R. Jones, and P. R. Briddon, Science (Washington, DC, U. S.) 272, 87 (1996).

    Article  CAS  Google Scholar 

  24. Z. Slanina, X. Zhao, F. Uhlik, M. Ozawa, and E. Osawa, J. Organomet. Chem. 599, 57 (2000).

    Article  CAS  Google Scholar 

  25. M. Jones and J. Klosin, Adv. Organomet. Chem. 42, 147 (1998).

    Article  CAS  Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalman, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision A.02 (Gaussian, Inc., Wallingford CT, 2009).

    Google Scholar 

  27. P. J. Hay, J. Chem. Phys. 66, 4377 (1977).

    Article  CAS  Google Scholar 

  28. R. Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980).

    Article  CAS  Google Scholar 

  29. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980).

    Article  CAS  Google Scholar 

  30. A. J. H. Wachters, J. Chem. Phys. 52, 1033 (1970).

    Article  CAS  Google Scholar 

  31. B. P. Pritchard, D. Altarawy, B. Didier, T. D. Gibson, and T. L. Windus, J. Chem. Inf. Model. 59, 4814 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. D. Feller, J. Comp. Chem. 17, 1571 (1996).

    Article  CAS  Google Scholar 

  33. K. L. Schuchardt, B. T. Didier, T. Elsethagen, L. Sun, V. Gurumoorthi, J. Chase, J. Li, and T. L. Windus, J. Chem. Inf. Model. 47, 1045 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. D. Rappoport and F. Furche, J. Chem. Phys. 133, 134105 (2010).

  35. D. Andrae, U. Haeussermann, M. Dolg, H. Stoll, and H. Preuss, Theor. Chim. Acta 77, 123 (1990).

    Article  CAS  Google Scholar 

  36. C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).

    Article  CAS  Google Scholar 

  37. R. C. Dunbar, J. Phys. Chem. A 106, 7328 (2002).

    Article  CAS  Google Scholar 

  38. M. Porembski and J. C. Weisshaar, J. Phys. Chem. A 105, 6655 (2001).

    Article  CAS  Google Scholar 

  39. M. Porembski and J. C. Weisshaar, J. Phys. Chem. A 105, 4851 (2001).

    Article  CAS  Google Scholar 

  40. Y. Zhang, Z. Guo, and X.-Z. You, J. Am. Chem. Soc. 123, 9378 (2001).

    Article  CAS  PubMed  Google Scholar 

  41. T. Lu and F. Chen, J. Mol. Graph. Model. 38, 314 (2012).

    Article  PubMed  Google Scholar 

  42. T. Lu and F. Chen, J. Comp. Chem. 33, 580 (2012).

    Article  Google Scholar 

  43. J. Klein, H. Khartabil, J.-C. Boisson, J. Contreras-García, J.-P. Piquemal, and E. Hénon, J. Phys. Chem. A 124, 1850 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. P. W. Ayers and R. G. Parr, J. Am. Chem. Soc. 422, 2010 (2000).

    Article  Google Scholar 

  45. R. G. Parr and P. K. Chattaraj, J. Am. Chem. Soc. 113, 1854 (1991).

    Article  CAS  Google Scholar 

  46. R. G. Pearson, J. Chem. Educ. 64, 561 (1987).

    Article  CAS  Google Scholar 

  47. R. G. Pearson, Acc. Chem. Res. 26, 250 (1993).

    Article  CAS  Google Scholar 

  48. R. G. Pearson, J. Chem. Educ. 76, 267 (1999).

    Article  CAS  Google Scholar 

  49. E. Chamorro, P. K. Chattaraj, and P. Fuentealba, J. Phys. Chem. A 107, 7068 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. R. Parthasarathi, M. Elango, V. Subramanian, and P. K. Chattaraj, Theor. Chem. Acc. 113, 257 (2005).

    Article  CAS  Google Scholar 

  51. J. R. Bleeke, Y.-F. **e, W.-J. Peng, and M. Chiang, J. Am. Chem. Soc. 111, 4118 (1989).

    Article  CAS  Google Scholar 

  52. C. Lefebvre, G. Rubez, H. Khartabil, J.-C. Boisson, J. Contreras-García, and E. Hénon, Phys. Chem. Chem. Phys. 19, 17928 (2017).

    Article  CAS  PubMed  Google Scholar 

  53. T. Lu and Q. Chen, J. Comput. Chem. 43, 539 (2022).

    Article  CAS  PubMed  Google Scholar 

  54. M. Palusiak, J. Organomet. Chem. 692, 3866 (2005).

    Article  Google Scholar 

  55. R. Ghiasi and A. Valizadeh, Main Group Chem. 21, 43 (2022).

    Article  CAS  Google Scholar 

  56. R. Ghiasi, R. Emami, and M. V. Sofiyani, Phosphor., Sulfur, Silicon Rel. Elem. 196, 751 (2021).

    Article  CAS  Google Scholar 

  57. S. H. Saraf and R. Ghiasi, J. Chem. Res. 44, 482 (2020).

    Article  CAS  Google Scholar 

  58. R. Ghiasi, S. H. Saraf, and H. Pasdar, Monatsh. Chem., 149 (2018).

  59. S. T. Howard and T. M. Krygowski, Can. J. Chem. 75, 1174 (1997).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. Ghiasi: supervision, conceptualization, data curation, investigation, formal analysis; M. Rahimi: methodology, data curation, writing, review, and editing; Asal Yousefi Siavoshani: methodology, writing, review, and editing.

Corresponding author

Correspondence to Reza Ghiasi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, R., Rahimi, M. & Siavoshani, A.Y. Stability, Electronic and Optical Properties of Irida-Naphthalene and Irida-Azulene: A Computational Investigation. Russ. J. Phys. Chem. 97, 2189–2197 (2023). https://doi.org/10.1134/S0036024423100187

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423100187

Keyword:

Navigation