Log in

Effect of Deposition Sequence on Catalytic Activity of CrOx–ZrO2–SiO2 in Nonoxidative Propane Dehydrogenation

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A comparison is made of CrOx–ZrO2–SiO2 catalysts (9 wt % chromium oxide based on Cr2O3); (Cr + Zr)/Si molar ratio of 0.8) synthesized using different orders of introducing components: (i) the simultaneous precipitation of all components, (ii) the deposition of CrOx on ZrO2–SiO2 via impregnation, and (iii) the co-precipitation of CrOx and ZrO2 on SiO2. The SiO2 precursors are TEOS in methods (i) and (ii), and SiO2 produced by calcination of rice husk in (iii). The catalysts are tested in the nonoxidative dehydrogenation of propane in a flow system with a fixed catalyst bed at 500–600°С. The co-precipitation of CrOx and ZrO2 ensures high efficiency of the catalysts. At 500 and 550°C, the most efficient catalyst is CrZr/SiO2 synthesized by depositing CrOx and ZrO2 on SiO2; at 600°C, the best on-stream behavior is exhibited by CrZrSi catalyst synthesized via the simultaneous precipitation of all components. SEM/EDX, XRD, H2-TPR, and Raman spectroscopy are used to show that in the catalysts synthesized via the co-precipitation of CrOx and ZrO2, these components (which form active sites) are uniformly distributed, have close contact, and are adequately dispersed, while Cr6+ is readily reduced to Cr3+ by the hydrogen contained in the reaction medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. Chen, X. Chang, G. Sun, et al., Chem. Soc. Rev. 50, 3315 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Z. Nawaz, Rev. Chem. Eng. 31, 413 (2015).

    Article  CAS  Google Scholar 

  3. C. Li and G. Wang, Chem. Soc. Rev. 50, 4359 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. M. Huš, D. Kopač, and B. Likozar, J. Catal. 386, 126 (2020).

    Article  Google Scholar 

  5. T. Otroshchenko, G. Jiang, V. A. Kondratenko, et al., Chem. Soc. Rev. 50, 473 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. V. Z. Fridman and R. **ng, Ind. Eng. Chem. Res. 56, 7937 (2017).

    Article  CAS  Google Scholar 

  7. T. P. Otroshchenko, U. Rodemerck, D. Linke, et al., J. Catal. 356, 197 (2017).

    Article  CAS  Google Scholar 

  8. P. Michorczyk, P. Pietrzyk, and J. Ogonowski, Microporous Mesoporous Mater. 161, 56 (2012).

    Article  CAS  Google Scholar 

  9. J. J. H. B. Sattler, J. Ruiz-Martinez, E. Santillan-Jimenez, et al., Chem. Rev. 114, 10613 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. T. Otroshchenko, V. A. Kondratenko, U. Rodemerck, et al., J. Catal. 348, 282 (2017).

    Article  CAS  Google Scholar 

  11. E. V. Golubina, I. Y. Kaplin, A. V. Gorodnova, et al., Molecules 27, 6095 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. F. Adam, J. N. Appaturi, and A. Iqbal, Catal. Today 190, 2 (2012).

    Article  CAS  Google Scholar 

  13. J. C. Furgal and C. U. Lenora, Phys. Sci. Rev. 5, 20190024 (2020).

  14. S. Azat, A. V. Korobeinyk, K. Moustakas, et al., J. Cleaner Product. 217, 352 (2019).

    Article  CAS  Google Scholar 

  15. C. Schlumberger and M. Thommes, Adv. Mater. Interfaces 8, 2002181 (2021).

  16. S. Kongwudthiti, P. Praserthdam, W. Tanakulrungsank, et al., J. Mater. Process. Technol. 136, 186 (2003).

    Article  CAS  Google Scholar 

  17. Y. Ma, Y. Wang, W. Wu, et al., Ind. Eng. Chem. Res. 60, 230 (2021).

    Article  CAS  Google Scholar 

  18. D. Wang, C. Zhang, M. Zhu, et al., Chem. Sel. 2, 4823 (2017).

    CAS  Google Scholar 

  19. S. Esposito, M. Turco, G. Bagnasco, et al., Appl. Catal. A: Gen. 372, 48 (2010).

    Article  CAS  Google Scholar 

  20. C. Ciszak, M. Mermoux, G. Gutierrez, et al., J. Raman Spectrosc. 50, 425 (2019).

    Article  CAS  Google Scholar 

  21. Z. V. Marinković Stanojević, N. Romčević, and B. Stojanović, J. Eur. Ceram. Soc. 27, 903 (2007).

    Article  Google Scholar 

  22. A. Chakrabarti, M. Gierada, J. Handzlik, et al., Top. Catal. 59, 725 (2016).

    Article  CAS  Google Scholar 

  23. F. Wang, J.-L. Fan, Y. Zhao, et al., J. Fluorine Chem. 166, 78 (2014).

    Article  CAS  Google Scholar 

  24. R. Camposeco, S. Castillo, N. Nava, et al., Top. Catal. 63, 481 (2020).

    Article  CAS  Google Scholar 

  25. D. L. Hoang and H. Lieske, Thermochim. Acta 345, 93 (2000).

    Article  CAS  Google Scholar 

  26. L. Zhong, Y. Yu, W. Cai, et al., Phys. Chem. Chem. Phys. 17, 15036 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. I. Yu. Kaplin, E. S. Lokteva, E. V. Golubina, K. I. Maslakov, S. A. Chernyak and V. V. Lunin, Kinet. Catal. 58, 585 (2017).

    Article  CAS  Google Scholar 

  28. L. Shi, P. Zhu, R. Yang, et al., Catal. Commun. 89, 1 (2017).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge support from the Lomonosov Moscow State University Program of Development for providing access to the XPS facility.

Funding

This work was supported by the Russian Science Foundation, project no. 22-23-00445.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Golubina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubina, E.V., Kaplin, I.Y., Uzhuev, I.K. et al. Effect of Deposition Sequence on Catalytic Activity of CrOx–ZrO2–SiO2 in Nonoxidative Propane Dehydrogenation. Russ. J. Phys. Chem. 97, 1860–1870 (2023). https://doi.org/10.1134/S0036024423090054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423090054

Keywords:

Navigation