Log in

Surface Tension of the Planar Interface of a Vapor–Liquid System on a Two-Dimensional Square Lattice

  • PHYSICAL CHEMISTRY OF DISPERSED SYSTEMS AND SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In an earlier work, the authors described a theoretical approach to deriving equations for equilibrium particle distributions by means of heterogeneous cluster variation (CV) that converges to the exact solution as the basis cluster grows. In this work, they present calculations of the surface tension (ST) of the planar interface of a vapor-liquid system on a two-dimensional square lattice by means of heterogeneous CV. The transitional region of the interface is a sequence of monomolecular layers with a variable fluid density fluidа. Calculations are made for six types of clusters with different sizes inside the phases (2 × n, n = 1–4, 3 × 3, and the k1s cluster with the nearest neighbors of any central site), and for eight clusters inside the transitional region (2 × 1, 2 × 2, 2 × 3, 3 × 2, 2 × 4, 4 × 2, 3 × 3, k1s) that differ by each cluster’s orientation relative to the normal to the surface. As the clusters grow, so does the accuracy of describing indirect correlations of laterally interacting particles. The temperature dependence of the ST is calculated. A monotonically growing ST is obtained as the temperature falls, starting from zero at the critical temperature. The calculation results converge to the exact Onsager solution as the clusters grow. Differences between thermodynamic requirements and ST calculations performed with the Ising model are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. J. W. Gibbs, Elementary Principles of Statistical Mechanics (Ox Bow Press, Woodbridge, CN, 1981).

    Google Scholar 

  2. S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids, Vol. 10 of Handbuch der Physik (Springer, Berlin, 1960).

  3. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  4. A. Adamson, The Physical Chemistry of Surfaces (Wiley, New York, 1976).

    Google Scholar 

  5. J. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford Univ. Press, Oxford, UK, 1978).

    Google Scholar 

  6. Yu. K. Tovbin, Small Systems and Fundamentals of Thermodynamics (Fizmatlit, Moscow, 2018; CRC, Boca Raton, FL, 2018).

  7. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 2099 (2018).

    Article  CAS  Google Scholar 

  8. V. K. Semenchenko, Surface Phenomena in Metals and Alloys (Moscow, 1957; Pergamon, Oxford, 1961).

  9. E. D. Shchukin, A. V. Pertsov, and E. A. Amelina, Colloid Chemistry (Vyssh. Shkola, Moscow, 1992) [in Russian].

    Google Scholar 

  10. H. D. Ursell, Proc. Cambridge Phil. Soc. 23, 685 (1927).

    Article  CAS  Google Scholar 

  11. J. E. Mayer, J. Chem. Phys. 5, 67 (1937).

    Article  CAS  Google Scholar 

  12. J. E. Mayer and M. G. Mayer, Statistical Mechanics (Wiley, New York, 1940).

    Google Scholar 

  13. J. O. Hirschfelder, C. F. Curtiss, and R. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954).

    Google Scholar 

  14. N. N. Bogolyubov, Problems of Dynamical Theory in Statistical Physics (Gostekhteorizdat, Moscow, 1946; Interscience, New York, 1962).

  15. C. A. Croxton, Liquid State Physics: A Statistical Mechanical Introduction (Cambridge Univ. Press, Cambridge, 1974).

    Book  Google Scholar 

  16. G. A. Martynov, Classical Statistical Physics. Fluid Theory (Intellekt, Dolgoprudnyi, 2011) [in Russian].

  17. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  CAS  Google Scholar 

  18. E. Ising, Zeitschr. Phys. 31, 253 (1925).

    Article  CAS  Google Scholar 

  19. R. J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic, New York, 1982).

    Google Scholar 

  20. S. Ono, Busseiron Kenkyu, No. 23, 10 (1950).

  21. J. E. Lane, Aust. J. Chem. 21, 827 (1968).

    Article  CAS  Google Scholar 

  22. A. Bellemans, Physica (Amsterdam, Neth.) 28, 617 (1962).

  23. M. E. Fisher and A. E. Ferdinand, Phys. Rev. Lett. 19, 69 (1967).

    Article  Google Scholar 

  24. R. A. Minlos and Ya. G. Sinai, Mat. Sb. SSSR 2, 335 (1967).

    Article  Google Scholar 

  25. R. A. Minlos and Ya. G. Sinai, Tr. Mosk. Mat. Ob-va 19, 121 (1968).

    Google Scholar 

  26. D. Abraham, G. Gallavotti, and A. Martin-Lof, Lett. Nuovo Cim. 2, 143 (1971).

    Article  Google Scholar 

  27. G. Gavallavotti and A. Martin-Lof, Commun. Math. Phys. 25, 87 (1972).

    Article  Google Scholar 

  28. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford Univ. Press, Oxford, 1971).

    Google Scholar 

  29. R. Kikuchi, Phys. Rev. 81, 988 (1951).

    Article  Google Scholar 

  30. M. Asta, in Theory and Applications of the Cluster Variation and Path Probability Methods, Ed. by J. L. Moran-Lopez and J. M. Sanchez (Plenum, New York, 1996).

    Google Scholar 

  31. P. Cenedese, in Theory and Applications of the Cluster Variation and Path Probability Methods, Ed. by J. L. Moran-Lopez and J. M. Sanchez (Plenum, New York, 1996).

    Google Scholar 

  32. E. V. Votyakov and Yu. K. Tovbin, Russ. J. Phys. Chem. A 96, 485 (2022).

    Article  CAS  Google Scholar 

  33. E. V. Votyakov and Yu. K. Tovbin, Russ. J. Phys. Chem. A 97, 1567 (2023).

  34. T. L. Hill, Statistical Mechanics. Principles and Selected Applications (McGraw-Hill, New York, 1956).

    Google Scholar 

  35. K. Huang, Statistical Mechanics (Wiley, New York, 1966).

    Google Scholar 

  36. N. A. Smirnova, Molecular Theories of Solutions (Khimiya, Leningrad, 1982) [in Russian].

    Google Scholar 

  37. Yu. K. Tovbin, Russ. J. Phys. Chem. A 90, 1439 (2016).

    Article  CAS  Google Scholar 

  38. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 59, 677 (2010).

    Article  CAS  Google Scholar 

  39. E. V. Votyakov and Yu. K. Tovbin, Russ. J. Phys. Chem. A 97, 1089 (2023).

  40. L. D. Landau and E. M. Lifshits, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuos Media (Nauka, Moscow, 1982; Pergamon, New York, 1984).

  41. E. S. Zaitseva and Yu. K. Tovbin, Russ. J. Phys. Chem. A 96, 2088 (2022).

    Article  CAS  Google Scholar 

  42. Yu. K. Tovbin, Zh. Fiz. Khim. 66, 1395 (1992).

    CAS  Google Scholar 

  43. I. Prigogine, The Molecular Theory of Solution (North-Holland, Amsterdam, 1957).

    Google Scholar 

  44. Ya. I. Frenkel’, Introduction to Theory of Metals (Moscow, GITTL, 1950) [in Russian].

    Google Scholar 

  45. Yu. K. Tovbin, The Molecular Theory of Adsorption in Porous Solids (Fizmatlit, Moscow, 2012; CRC, Boca Raton, FL, 2017).

  46. C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952).

    Article  CAS  Google Scholar 

  47. T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952).

    Article  CAS  Google Scholar 

  48. Yu. K. Tovbin, Russ. J. Phys. Chem. A 96, 1363 (2022).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Votyakov.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Votyakov, E.V., Tovbin, Y.K. Surface Tension of the Planar Interface of a Vapor–Liquid System on a Two-Dimensional Square Lattice. Russ. J. Phys. Chem. 97, 1574–1581 (2023). https://doi.org/10.1134/S0036024423070312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423070312

Keywords:

Navigation