Log in

Effect of Chitosan on the Electronic State and Distribution of Rhodium on the Zeolite Catalyst Surface According to Data on IR Spectroscopy of Adsorbed Carbon Monoxide

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

An Erratum to this article was published on 01 September 2023

This article has been updated

Abstract

Zeolite catalysts for the conversion of dimethyl ether to light olefins with a monoatomic distribution of rhodium are studied via infrared spectroscopy of the diffuse reflection of adsorbed carbon monoxide and X-ray absorption spectroscopy. The zeolite is preliminarily treated with ultrasound to obtain a monatomic distribution of the active component on the support’s surface, and a polymer (chitosan hydrochloride) is used as the medium for dispersing rhodium at the stage of impregnation. A sample prepared via the traditional impregnation of zeolite with an aqueous solution of rhodium chloride is studied for purposes of comparison. It is shown that rhodium in the structure of zeolite treated with ultrasound is in the form of isolated metal centers whether it is deposited with or without a polymer. Synthesis with chitosan results in a more disperse distribution of rhodium on the outer surface of the zeolite and greater oxidizing ability of the catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Change history

REFERENCES

  1. E. R. Naranov, K. I. Dement’ev, I. M. Gerzeliev, et al., Pet. Chem. 59, 247 (2019). https://doi.org/10.1134/S0965544119030101

    Article  CAS  Google Scholar 

  2. N. V. Kolesnichenko, N. N. Ezhova, and Yu. M. Snatenkova, Russ. Chem. Rev. 89, 191 (2020). https://doi.org/10.1070/RCR4900

    Article  CAS  Google Scholar 

  3. S. N. Khadzhiev, N. N. Ezhova, and O. V. Yashina, Pet. Chem. 57, 553 (2017). https://doi.org/10.1134/S0965544117070040

    Article  CAS  Google Scholar 

  4. N. N. Ezhova, N. V. Kolesnichenko, and T. I. Batova, Pet. Chem. 60, 459 (2020). https://doi.org/10.1134/S0965544120040064

    Article  CAS  Google Scholar 

  5. M. K. Samantaray, V. D’Elia, E. Pump, et al., Chem. Rev. 120, 734 (2020). https://doi.org/10.1021/acs.chemrev.9b00238

    Article  CAS  PubMed  Google Scholar 

  6. Sh. Ding, M. J. Hülsey, J. Pérez-Ramírez, and N. Yan, Joule 3, 2897 (2019). https://doi.org/10.1016/j.joule.2019.09.015

    Article  CAS  Google Scholar 

  7. S. Bai, F. Liu, B. Huang, et al., Nat. Commun. 11, 954 (2020). https://doi.org/10.1038/s41467-020-14742-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. T. Zhang, Z. Chen, A. G. Walsh, et al., Adv. Mater. 32, 2002910 (2020). https://doi.org/10.1002/adma.202002910

  9. Sh. Ji, Y. Chen, X. Wang, et al., Chem. Rev. 120, 11900 (2020). https://doi.org/10.1021/acs.chemrev.9b00818

    Article  CAS  PubMed  Google Scholar 

  10. A. W. Budiman, J. S. Nam, J. H. Park, et al., Catal. Surv. Asia 20, 173 (2016). https://doi.org/10.1007/s10563-016-9215-9

    Article  CAS  Google Scholar 

  11. Z. Ren, Y. Lyu, X. Song, et al., Adv. Mater. 31, 1904976 (2019). https://doi.org/10.1002/adma.201904976

  12. Z. Ren, Y. Lyu, S. Feng, et al., Mol. Catal. 442, 83 (2017). https://doi.org/10.1016/j.mcat.2017.09.007

    Article  CAS  Google Scholar 

  13. K. Park, S. Lim, J. H. Baik, et al., Catal. Sci. Technol. 8, 2894 (2018). https://doi.org/10.1039/C8CY00294K

    Article  CAS  Google Scholar 

  14. P. K. Saikia, P. P. Sarmah, B. J. Borah, et al., J. Mol. Catal. A: Chem. 412, 27 (2016). https://doi.org/10.1016/j.molcata.2015.11.015

    Article  CAS  Google Scholar 

  15. J. Qi, J. Finzel, H. Robatjazi, et al., J. Am. Chem. Soc. 142, 14178 (2020). https://doi.org/10.1021/jacs.0c05026

    Article  CAS  PubMed  Google Scholar 

  16. N. V. Kolesnichenko, T. I. Batova, A. N. Stashenko, et al., Microporous Mesoporous Mater. 344, 112239 (2022). https://doi.org/10.1016/j.micromeso.2022.112239

  17. T. I. Batova, T. K. Obukhova, A. N. Stashenko, et al., Pet. Chem. 62, 425 (2022). https://doi.org/10.1134/S0965544122020165

    Article  CAS  Google Scholar 

  18. M. Babucci, A. Guntida, and B. C. Gates, Chem. Rev. 120, 11956 (2020). https://doi.org/10.1021/acs.chemrev.0c00864

    Article  CAS  PubMed  Google Scholar 

  19. I. Ogino and B. C. Gates, J. Phys. Chem. C 114, 8405 (2010). https://doi.org/10.1021/jp100673y

    Article  CAS  Google Scholar 

  20. R. Osuga, B. Saikhantsetseg, S. Yasuda, et al., Chem. Commun. 56, 5913 (2020). https://doi.org/10.1039/D0CC02284E

    Article  CAS  Google Scholar 

  21. C. Asokan, H. V. Thang, G. Pacchioni, and P. Christopher, Catal. Sci. Technol. 10, 1597 (2020). https://doi.org/10.1039/D0CY00146E

    Article  CAS  Google Scholar 

  22. J. C. Matsubu, V. N. Yang, and P. Christopher, J. Am. Chem. Soc. 137, 3076 (2015). https://doi.org/10.1021/ja5128133

    Article  CAS  PubMed  Google Scholar 

  23. Y. Hou, S. Ogasawara, A. Fukuoka, and H. Kobayashi, Catal. Sci. Technol. 7, 6132 (2017). https://doi.org/10.1039/C7CY02183F

    Article  CAS  Google Scholar 

  24. A. Chernyshov, A. Veligzhanin, and Y. Zubavichus, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 95 (2009). https://doi.org/10.1016/j.nima.2008.12.167

    Article  CAS  Google Scholar 

  25. N. Trofimova, A. Veligzhanin, V. Murzin, et al., Ross. Nanotechnol. 8, 396 (2013). https://doi.org/10.1134/S1995078013030191

    Article  Google Scholar 

  26. B. Ravel and M. Newville, J. Synchrotr. Rad. 12, 537 (2005). https://doi.org/10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  27. M. Newille, J. Synchrotr. Rad. 8, 322 (2001). https://doi.org/10.1107/S0909049500016964

    Article  Google Scholar 

  28. Q. Sun, N. Wang, T. Zhang, et al., Angew. Chem. Int. Ed. 58, 18570 (2019). https://doi.org/10.1002/anie.201912367

    Article  CAS  Google Scholar 

  29. A. J. Liang and B. C. Gates, J. Phys. Chem. C 112, 18039 (2008). https://doi.org/10.1021/jp805917g

    Article  CAS  Google Scholar 

  30. N. V. Kolesnichenko, Y. M. Snatenkova, T. I. Batova, et al., Microporous Mesoporous Mater. 330, 111581 (2022). https://doi.org/10.1016/j.micromeso.2021.111581

  31. R. Bulanek, I. Voleska, E. Ivanova, et al., J. Phys. Chem. C 113, 11066 (2009). https://doi.org/10.1021/jp901575p

    Article  CAS  Google Scholar 

  32. I. Voleská, P. Nachtigall, E. Ivanova, et al., Catal. Today 243, 53 (2015). https://doi.org/10.1016/j.cattod.2014.07.029

    Article  CAS  Google Scholar 

  33. C. O. Arean, D. Nachtigallova, P. Nachtigall, et al., Phys. Chem. Chem. Phys. 9, 1421 (2007). https://doi.org/10.1039/b615535a

    Article  CAS  Google Scholar 

  34. A. Davydov, Molecular Spectroscopy of Oxide Catalyst Surfaces (Wiley, Chichester, UK, 2003), p. 668.

    Book  Google Scholar 

  35. M. I. Shilina, O. V. Udalova, and S. M. Nevskaya, Kinet. Catal. 54, 691 (2013). https://doi.org/10.1134/S0023158413060116

    Article  CAS  Google Scholar 

  36. E. Ivanova, M. Mihaylov, F. Thibault-Starzyk, et al., J. Catal. 236, 168 (2005). https://doi.org/10.1016/j.jcat.2005.09.017

    Article  CAS  Google Scholar 

  37. K. Hadjiivanov, E. Ivanova, L. Dimitrov, and H. Knözinger, J. Mol. Struct. 661–662, 459 (2003). https://doi.org/10.1016/j.molstruc.2003.09.007

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of a State Task for the Institute of the Chemical Industry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. I. Batova.

Ethics declarations

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shilina, M.I., Obukhova, T.K., Batova, T.I. et al. Effect of Chitosan on the Electronic State and Distribution of Rhodium on the Zeolite Catalyst Surface According to Data on IR Spectroscopy of Adsorbed Carbon Monoxide. Russ. J. Phys. Chem. 97, 1387–1394 (2023). https://doi.org/10.1134/S0036024423070269

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423070269

Keywords:

Navigation