Log in

Investigation of the Pore Structure of Exfoliated Graphite Based on Highly Oriented Pyrolytic Graphite Nitrate

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Graphite intercalated compounds (GICs) with different stage numbers were prepared from highly oriented pyrolytic graphite (HOPG) and nitric acid using a chemical method. Exfoliated graphite (EG-T) was synthesized from GICs by water treatment followed by thermal shock. The effects of the graphite oxidation depth on the EG-T thermal expansion coefficient, volatile content, and total porosity were examined. However, the main purpose of this work was investigation of the dependence of the inner EG-T pore structure on the level of oxidation. Thus, we studied the micro- and mesopore structure and specific surface area by nitrogen porosimetry and the modern 2D-NLDFT method to calculate the pore size distribution and pore volume. As well, we performed a mercury porosimetry experiment to determine the macropore characteristics. We examined the pore space using a number of scanning electron micrographs of EG-T particle cross-sections using an image processing technique. In this way we showed the strong correlation between the EG-T pore structure parameters and oxidation depth of graphite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. D. D. L. Chung, J. Mater. Sci. 51, 554 (2016). https://doi.org/10.1007/s10853-015-9284-6

    Article  CAS  Google Scholar 

  2. M. Inagaki, F. Kang, M. Toyoda, and H. Konno, in Advanced Materials Science and Engineering of Carbon (Elsevier, Amsterdam, 2014), p. 313. https://doi.org/10.1016/B978-0-12-407789-8.00014-4

    Book  Google Scholar 

  3. Z. Wang, E. Han, and W. Ke, Corros. Sci. 49, 2237 (2007). https://doi.org/10.1016/j.corsci.2006.10.024

    Article  CAS  Google Scholar 

  4. L. N. Song, M. **ao, and Y. Z. Meng, Compos. Sci. Technol. 66, 2156 (2006). https://doi.org/10.1016/j.compscitech.2005.12.013

    Article  CAS  Google Scholar 

  5. N. E. Sorokina, A. V. Redchitz, S. G. Ionov, and V. V. Avdeev, J. Phys. Chem. Solids 67, 1202 (2006). https://doi.org/10.1016/j.jpcs.2006.01.048

    Article  CAS  Google Scholar 

  6. S. K. Nayak, S. Mohanty, and S. K. Nayak, High Perform. Polym. 32, 506 (2019). https://doi.org/10.1177/0954008319884616

    Article  CAS  Google Scholar 

  7. N. E. Sorokina, N. V. Maksimova, and V. V. Avdeev, Inorg. Mater. 37, 360 (2001). https://doi.org/10.1023/A:1017575710886

    Article  CAS  Google Scholar 

  8. A. V. Ivanov, N. V. Maksimova, A. O. Kamaev, et al., Mater. Lett. 228, 403 (2018). https://doi.org/10.1016/j.matlet.2018.06.072

    Article  CAS  Google Scholar 

  9. I. M. Afanasov, O. N. Shornikova, D. A. Kirilenko, et al., Carbon 48, 1862 (2010). https://doi.org/10.1016/j.carbon.2010.01.055

    Article  CAS  Google Scholar 

  10. W. C. Forsman, F. L. Vogel, D. E. Carl, et al., Carbon 16, 269 (1978). https://doi.org/10.1016/0008-6223(78)90040-4

  11. N. E. Sorokina, N. V. Maksimova, and V. V. Avdeev, Inorg. Mater. 38, 564 (2002). https://doi.org/10.1023/A:1015857317487

    Article  CAS  Google Scholar 

  12. M. Salvatore, G. Carotenuto, S. de Nicola, et al., Nanoscale Res. Lett. 12, 167 (2017). https://doi.org/10.1186/s11671-017-1930-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. M. Dimiev, K. Shukhina, N. Behabtu, et al., J. Phys. Chem. C 123, 19246 (2019). https://doi.org/10.1021/acs.jpcc.9b06726

    Article  CAS  Google Scholar 

  14. N. E. Sorokina, L. A. Monyakina, N. V. Maksimova, et al., Inorg. Mater. 38, 482 (2002). https://doi.org/10.1023/A:1015423105964

    Article  CAS  Google Scholar 

  15. V. S. Leshin, N. E. Sorokina, and V. V. Avdeev, Inorg. Mater. 40, 649 (2004). https://doi.org/10.1023/B:INMA.0000032001.86743.00

    Article  CAS  Google Scholar 

  16. A. V Dunaev, I. V. Arkhangelsky, Y. V. Zubavichus, and V. V. Avdeev, Carbon (N. Y.) 46, 788 (2008). https://doi.org/10.1016/j.carbon.2008.02.003

    Article  CAS  Google Scholar 

  17. B. Gurzęda, T. Buchwald, and P. Krawczyk, J. Solid State Electrochem. 24, 1363 (2020). https://doi.org/10.1007/s10008-020-04642-x

    Article  CAS  Google Scholar 

  18. E. A. Efimova, D. A. Syrtsova, and V. V. Teplyakov, Sep. Purif. Technol. 179, 467 (2017). https://doi.org/10.1016/j.seppur.2017.02.023

    Article  CAS  Google Scholar 

  19. J. Bodzenta, J. Mazur, and A. Kaźmierczak-Bałata, Appl. Phys. B 105, 623 (2011). https://doi.org/10.1007/s00340-011-4510-7

    Article  CAS  Google Scholar 

  20. I. M. Afanasov, I. V. Makarenko, I. I. Vlasov, and G. van Tendeloo, in Proceedings of the Annual World Conference on Carbon (Curran Assoc., Clemson, South Carolina, 2010), p. 645.

  21. A. V. Ivanov, M. S. Manylov, N. V. Maksimova, et al., J. Mater. Sci. 54, 4457 (2019). https://doi.org/10.1007/s10853-018-3151-1

    Article  CAS  Google Scholar 

  22. M. Inagaki, R. Tashiro, M. Toyoda, et al., Ceram. Soc. Jpn. 112, S1513 (2004). https://doi.org/10.14852/jcersjsuppl.112.0.S1513.0

    Article  Google Scholar 

  23. F. Kang, Y.-P. Zheng, H.-N. Wang, et al., Carbon 40, 1575 (2002). https://doi.org/10.1016/S0008-6223(02)00023-4

  24. M. Inagaki, R. Tashiro, Y. Washino, et al., J. Phys. Chem. Solids 65, 133 (2004). https://doi.org/10.1016/j.jpcs.2003.10.007

    Article  CAS  Google Scholar 

  25. M. Inagaki and T. Suwa, Carbon (N. Y.) 39, 915 (2001). https://doi.org/10.1016/S0008-6223(00)00199-8

  26. M. Inagaki, N. Saji, Y.-P. Zheng, et al., TANSO 2004, 258 (2004). https://doi.org/10.7209/tanso.2004.258

    Article  Google Scholar 

  27. B. Tryba, A. W. Morawski, R. J. Kaleńczuk, and M. Inagaki, Spill Sci. Technol. Bull. 8, 569 (2003). https://doi.org/10.1016/S1353-2561(03)00070-7

  28. O. N. Shornikova, E. V. Kogan, D. V. Petrov, et al., in Proceedings of the Annual World Conference on Carbon (Curran Assoc., Clemson, South Carolina, 2010), p. 421.

  29. R. Goudarzi and G. Hashemi Motlagh, Heliyon 5, e02595 (2019). https://doi.org/10.1016/j.heliyon.2019.e02595

  30. S. G. Bogdanov, E. Z. Valiev, Y. A. Dorofeev, et al., Cryst. Rep. 51, S12 (2006). https://doi.org/10.1134/S1063774506070030

    Article  CAS  Google Scholar 

  31. N. E. Sorokina, L. A. Monyakina, N. V. Maksimova, et al., Inorg. Mater. 38, 482 (2002). https://doi.org/10.1023/A:1015423105964

    Article  CAS  Google Scholar 

  32. N. E. Sorokina, I. V. Nikol’skaya, S. G. Ionov, et al., Russ. Chem. Bull. 54, 1749 (2005). https://doi.org/10.1007/s11172-006-0034-4

    Article  CAS  Google Scholar 

  33. K. S. W. Sing, Pure Appl. Chem. 54, 2201 (1982). https://doi.org/10.1351/pac198254112201

    Article  Google Scholar 

  34. J. Jagiello and J. P. Olivier, Carbon (N. Y.) 55, 70 (2012). https://doi.org/10.1016/j.carbon.2012.12.011

    Article  CAS  Google Scholar 

  35. J. Jagiello and J. P. Olivier, J. Phys. Chem. C 113, 19382 (2009). https://doi.org/10.1021/jp9082147

    Article  CAS  Google Scholar 

  36. S. Ross and J. P. Olivier, J. Phys. Chem. 65, 608 (1961). https://doi.org/10.1021/j100822a005

    Article  CAS  Google Scholar 

  37. J. P. Olivier and M. Winter, J. Power Sources 97–98, 151 (2001). https://doi.org/10.1016/S0378-7753(01)00527-4

  38. Z. Li, H. Peng, R. Liu, et al., J. Power Sources 457, 228022 (2020). https://doi.org/10.1016/j.jpowsour.2020.228022

Download references

ACKNOWLEDGMENTS

This research was performed according to the Development program of the Interdisciplinary Scientific and Educational School of Moscow State University “The future of the planet and global environmental change.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Krautsou.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krautsou, A., Shornikova, O.N., Bulygina, A.I. et al. Investigation of the Pore Structure of Exfoliated Graphite Based on Highly Oriented Pyrolytic Graphite Nitrate. Russ. J. Phys. Chem. 97, 1174–1182 (2023). https://doi.org/10.1134/S0036024423060122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423060122

Keywords:

Navigation