Log in

Evolution of the Impurity Sites and Electronic Spectra of Aluminum Phthalocyanine in a Silicate Nanoreactor

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS, SUPRAMOLECULAR STRUCTURES, AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The evolution of the electronic absorption spectra of substituted aluminum phthalocyanine incorporated into a nanoporous silicate gel matrix has been studied. The decomposition of the contour of the long-wavelength Q-absorption band of molecules into Voigt components reveals the dependence of the formation of various types of impurity sites in the matrix nanopores, which act as a solid-state nanoreactor, on the drying time of the matrix. Possible mechanisms of the effect of the internal structure of the synthesized silicate material during the transition from a sol state to a dried xerogel state on the spectral properties of phthalocyanine impurity molecules are discussed. Models of the interaction of the impurity molecules with the surface of the matrix nanopores during drying are considered; the features of the evolution of the resulting impurity sites are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. L. L. Hench and J. K. West, Chem. Rev. 90, 33 (1990). https://doi.org/10.1021/cr00099a003

    Article  CAS  Google Scholar 

  2. S. M. Arabei, T. A. Pavich, I. V. Stanishevskii, and C. Crepin, J. Appl. Spectrosc. 89, 201 (2022). https://doi.org/10.1007/s10812-022-01344-2

    Article  CAS  Google Scholar 

  3. T. Komori and Y. Amao, J. Porphyr. Phthalocyan. 7, 131 (2003). https://doi.org/10.1142/S1088424603000185

    Article  CAS  Google Scholar 

  4. A. Anctil, B. J. Landi, and R. P. Raffaelle, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference PVSC 2009, Philadelphia, Pennsylvania, USA, June 7–12, 2009 (2009), p. 1344.

  5. D. Frackowiak, K. Wiktorowicz, A. Planner, et al., Int. J. Photoenergy 4, 51 (2002). https://doi.org/10.1155/S1110662X02000090

    Article  CAS  Google Scholar 

  6. D. Frackowiak, R.-M. Ion, and A. Waszkowiak, J. Phys. Chem. B 106, 13154 (2002). https://doi.org/10.1021/jp0212592

    Article  CAS  Google Scholar 

  7. T. A. Pavich, S. M. Arabei, and K. N. Solovyev, J. Appl. Spectrosc. 85, 1 (2018).

    Article  CAS  Google Scholar 

  8. T. A. Pavich, I. V. Stanishevskii, D. T. Kozhich, et al., J. Appl. Spectrosc. 87, 668 (2020).

    Article  Google Scholar 

  9. Matlab. https://en.wikipedia.org/wiki/Matlab.

  10. Scilab. https://en.wikipedia.org/wiki/Scilab.

  11. S. M. Abrarov and B. M. Quine, Appl. Math. Comput. 218, 1894 (2011). https://doi.org/10.1016/j.amc.2011.06.072

    Article  Google Scholar 

  12. S. M. Abrarov and B. M. Quine, ar**v: 1205.1768v1 [math.NA] (2012). https://doi.org/10.48550/ar**v.1205.1768

  13. F. Gao and L. Han, Comput. Optim. Appl. 51, 259 (2012). https://doi.org/10.1007/s10589-010-9329-3

    Article  Google Scholar 

  14. A. Waszkowiak, D. Frackowiak, K. Wiktorowicz, and J. Miyake, Acta Biochim. Pol. 49, 633 (2002). https://doi.org/10.18388/abp.2002_3772

    Article  CAS  PubMed  Google Scholar 

  15. L. A. Lapkina, N. Yu. Konstantinov, V. E. Larchenko, et al., J. Porphyr. Phthalocyan. 13, 859 (2009). https://doi.org/10.1142/S108842460900005X

    Article  CAS  Google Scholar 

  16. L. A. Lapkina, G. A. Kirakosyan, V. E. Larchenko, A. Yu. Tsivadze, and Yu. G. Gorbunova, Russ. J. Inorg. Chem. 65, 176 (2020). https://doi.org/10.1134/S0036023620020072

    Article  CAS  Google Scholar 

  17. A. B. P. Lever, Adv. Inorg. Chem. Radiochem. 7, 27 (1965). https://doi.org/10.1016/S0065-2792(08)60314-3

    Article  CAS  Google Scholar 

  18. D. Eastwood, L. Edwards, M. Gouterman, and J. Steinfeld, J. Mol. Spectrosc. 20, 381 (1966). https://doi.org/10.1016/0022-2852(66)90009-9

    Article  CAS  Google Scholar 

  19. P. S. H. Fitch, C. A. Haynam, and D. H. Levy, J. Chem. Phys. 73, 1064 (1980). https://doi.org/10.1063/1.440278

    Article  CAS  Google Scholar 

  20. V. F. Kiselev, Surface Phenomena in Semiconductors and Dielectrics (Nauka, Moscow, 1970) [in Russian].

    Google Scholar 

  21. V. F. Kiselev, Dokl. Akad. Nauk SSSR 176, 124 (1967).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. Claudine Crepin-Gilbert (Institut des Sciences Moléculaires d’Orsay, France) for providing aluminum phthalocyanine and fruitful discussion of the results.

Funding

This work was supported in part by the Belarusian Republican Foundation for Basic Research (agreement no. F21MS-017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Arabei.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arabei, S.M., Stanishevsky, I.V., Pavich, T.A. et al. Evolution of the Impurity Sites and Electronic Spectra of Aluminum Phthalocyanine in a Silicate Nanoreactor. Russ. J. Phys. Chem. 97, 1195–1201 (2023). https://doi.org/10.1134/S003602442306002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442306002X

Keywords:

Navigation