Log in

Density Functional Theory and Computational Simulation of the Molecular Structure on Corrosion of Carbon Steel in Acidic Media of Some Amino Acids

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Corrosion is the deterioration of materials as a consequence of reaction to their environment. The corrosion in the instruction field poses safety, environmental threat, and financial. Based on DFT at 6‑311++G basis set and B3LYP level, calculated of several quantum chemical parameters. The three amino acids serine, tryptophan, and tyrosine have been investigated in gas and aqueous phases on corrosion of carbon steel utilizing DFT as green corrosion inhibitors. The order of inhibition efficiency in this study is serine < tyrosine < tryptophan, which relies on quantum chemical behaviors such as (LUMO) lowest unoccupied molecular orbital, (HOMO) highest occupied molecular orbital, electronegativity, bandgap energy, hardness, softness, chemical reactivity, polarization, total energy interaction of molecules, ionization energy, and electron affinity. The electrophilicity and nucleophilicity has been evaluated through Fukui indices. These are significant to estimate the most active reaction region, responsible for donating and accepting electrons to form coordinate bonds for the adsorption of the non-protonated species on the iron surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. M. Dehdab, M. Shahraki, and S. M. Habibi-Khorassani, Amino Acids 48, 291 (2016).

    Article  CAS  Google Scholar 

  2. H. M. Qadr and D. M. Mamand, J. Bio-Tribo-Corros. 7 (4), 1 (2021). https://doi.org/10.1007/s40735-021-00566-9

  3. H. M. Qadr, Atom Indones. 46, 47 (2020).

    Article  Google Scholar 

  4. H. Elmsellem, T. Harit, A. Aouniti, et al., Prot. Met. Phys. Chem. Surf. 51, 873 (2015).

    Article  CAS  Google Scholar 

  5. A. Zarrouk, B. Hammouti, A. Dafali, et al., J. Saudi Chem. Soc. 18, 450 (2014).

    Article  Google Scholar 

  6. H. M. Qadr, Ann. Dunarea de Jos Univ. Galati, Fasc. IX: Metall. Mater. Sci. 43 (4), 13 (2020).

  7. H. M. Qadr, Phys. Part. Nucl. Lett. 18, 185 (2021).

    Article  CAS  Google Scholar 

  8. F. Rosei, M. Schunack, Y. Naitoh, et al., Prog. Surf. Sci. 71, 95 (2003).

    Article  CAS  Google Scholar 

  9. D. M. Mamand and H. M. Qadr, Prot. Met. Phys. Chem. Surf. 57, 943 (2021).

    Article  Google Scholar 

  10. M. M. Solomon, S. A. Umoren, I. I. Udosoro, and A. P. Udoh, Corros. Sci. 52, 1317 (2010).

    Article  CAS  Google Scholar 

  11. S. K. Karn, A. Bhambri, I. R. Jenkinson, et al., Corros. Rev. 38, 403 (2020).

    Article  CAS  Google Scholar 

  12. S. K. Shukla, A. K. Singh, I. Ahamad, and M. Quraishi, Mater. Lett. 63, 819 (2009).

    Article  CAS  Google Scholar 

  13. V. Konovalova, Mater. Today: Proc. 38, 1326 (2021).

    CAS  Google Scholar 

  14. C. Feiler, D. Mei, B. Vaghefinazari, et al., Corros. Sci. 163, 108245 (2020).

  15. B. El Ibrahimi, A. Jmiai, L. Bazzi, and S. El Issami, Arab. J. Chem. 13, 740 (2020).

    Article  CAS  Google Scholar 

  16. A. Al-Amiery, T. A. Salman, K. F. Alazawi, et al., Int. J. Low-Carbon Technol. 15, 202 (2020).

    Article  CAS  Google Scholar 

  17. C. M. Fernandes, V. G. Pina, L. X. Alvarez, et al., Colloids Surf., A 599, 124857 (2020).

  18. H. M. Qadr, Russ. J. Non-Ferr. Met. 62, 561 (2021).

    Google Scholar 

  19. D. Mamand, J. Phys. Chem. Funct. Mater. 2, 32 (2019).

    Google Scholar 

  20. D. E. Woon and T. H. Dunning, Jr., J. Chem. Phys. 103, 4572 (1995).

    Article  CAS  Google Scholar 

  21. D. Mamand, J. Phys. Chem. Funct. Mater. 2, 77 (2019).

    Google Scholar 

  22. S. Kaya and C. Kaya, Mol. Phys. 113, 1311 (2015).

    Article  CAS  Google Scholar 

  23. S. Kaya and C. Kaya, Comput. Theor. Chem. 1052, 42 (2015).

    Article  CAS  Google Scholar 

  24. S. K. Saha, P. Ghosh, A. Hens, et al., Phys. E (Amsterdam, Neth.) 66, 332 (2015).

  25. S. Kaya and C. Kaya, Comput. Theor. Chem. 1060, 66 (2015).

    Article  CAS  Google Scholar 

  26. N. A. Kovačević and A. Kokalj, J. Phys. Chem. C 115, 24189 (2011).

    Article  Google Scholar 

  27. S. Kaya, B. Tüzün, C. Kaya, and I. B. Obot, J. Taiwan Inst. Chem. Eng. 58, 528 (2016).

    CAS  Google Scholar 

  28. N. Obi-Egbedi, I. Obot, and M. I. El-Khaiary, J. Mol. Struct. 1002, 86 (2011).

    Article  CAS  Google Scholar 

  29. L. M. Rodríguez-Valdez, A. Martínez-Villafañe, and D. Glossman-Mitnik, J. Mol. Struct.: THEOCHEM 713, 65 (2005).

    Article  Google Scholar 

  30. E. Zvereva, I. Vandyukova, A. Vandyukov, et al., Russ. Chem. Bull. 61, 1199 (2012).

    Article  CAS  Google Scholar 

  31. I. Merimi, R. Touzani, A. Aouniti, et al., Int. J. Corros. Scale Inhib. 9, 1237 (2020).

    CAS  Google Scholar 

  32. Ş. Erdoğan, Z. S. Safi, S. Kaya, et al., J. Mol. Struct. 1134, 751 (2017).

    Article  Google Scholar 

  33. S. Kaya, C. Kaya, and N. Islam, Comput. Theor. Chem. 1080, 72 (2016).

    Article  CAS  Google Scholar 

  34. B. Gómez, N. V. Likhanova, M. A. Domínguez-Aguilar, et al., J. Phys. Chem. B 110, 8928 (2006).

    Article  Google Scholar 

  35. F. Mendez, M. Galván, A. Garritz, et al., J. Mol. Struct.: THEOCHEM 277, 81 (1992).

    Article  Google Scholar 

  36. S. Kumar, D. G. Ladha, P. C. Jha, and N. K. Shah, Int. J. Corros. 2013, 819643 (2013).

  37. R. G. Parr and W. Yang, J. Am. Chem. Soc. 106, 4049 (1984).

    Article  CAS  Google Scholar 

  38. R. G. Parr, S. R. Gadre, and L. J. Bartolotti, Proc. Natl. Acad. Sci. U. S. A. 76, 2522 (1979).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiwa Mohammad Qadr.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mamand, D., Qadr, H. Density Functional Theory and Computational Simulation of the Molecular Structure on Corrosion of Carbon Steel in Acidic Media of Some Amino Acids. Russ. J. Phys. Chem. 96, 2155–2165 (2022). https://doi.org/10.1134/S0036024422100193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422100193

Keywords:

Navigation