Log in

Photocatalytic Reduction of Water by Particles of Cadmium Sulfide in a Solution of Sodium Sulfite

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A procedure is described for measuring electromotive forces to study the photochemical reduction of water by suspensions of cadmium sulfide. A galvanic cell is created with varying concentrations of hydrogen ions and amounts of gaseous products. It is established that reactions occur on the electrode in suspensions of cadmium sulfide with the evolution of hydrogen and oxidation of sulfite ions. A correlation is noted between the change in electromotive forces in galvanic cells and the evolution of gas in the reactor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. T. Sakata and T. Kavai, in Energy Resources through Photochemistry and Catalysis, Ed. by M. Gratzel (Academic, New York, 1983).

    Google Scholar 

  2. N. M. Soboleva, A. A. Nosonovich, and V. V. Goncharuk, J. Water Chem. Technol. 29, 72 (2007).

    Article  Google Scholar 

  3. E. A. Kozlova and V. N. Parmon, Russ. Chem. Rev. 86, 870 (2017).

    Article  CAS  Google Scholar 

  4. E. A. Kozlova and A. V. Vorontsov, Int. J. Hydrogen Energy 35, 7337 (2010).

    Article  CAS  Google Scholar 

  5. S. Protti, A. Albini, and N. Serpone, Phys. Chem. Chem. Phys. 16, 19790 (2014).

    Article  CAS  Google Scholar 

  6. D. **g, L. Guo, L. Zhao, et al., Int. J. Hydrogen Energy 35, 7087 (2010).

    Article  CAS  Google Scholar 

  7. X. H. Hao, L. J. Guo, X. Mao, et al., Int. J. Hydrogen Energy 28, 55 (2003).

    Article  CAS  Google Scholar 

  8. J. Zhu and M. Zach, Curr. Opinion Colloid Interface Sci. 14, 260 (2009).

    Article  CAS  Google Scholar 

  9. B. D. Alexander, P. J. Kulesza, L. Rutkowska, et al., J. Mater. Chem. 18, 2298 (2008).

    Article  CAS  Google Scholar 

  10. T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, Int. J. Hydrogen Energy 27, 991 (2002).

    Article  CAS  Google Scholar 

  11. W. Choi, Catal. Surv. Asia 10, 16 (2006).

    Article  CAS  Google Scholar 

  12. Y. Zou, C. Guo, X. Cao, et al., J. Environ. Chem. Eng. 9, 106270 (2021).

  13. L. Wei, D. Zeng, Z. **e, et al., Front. Chem. 15 (2021).

  14. M. Zhang, Y. Chen, J. Chang, et al., J. Am. Chem. Soc. 1, 212 (2021).

    CAS  Google Scholar 

  15. V. N. Parmon, Zh. Obshch. Khim. 62, 1703 (1992).

    CAS  Google Scholar 

  16. V. Preethi and S. Kanmani, Mater. Sci. Semicond. Process. 16, 561 (2013).

    Article  CAS  Google Scholar 

  17. N. Buehler, K. Meier, and J. F. Reber, J. Phys. Chem. 88, 3261 (1984).

    Article  CAS  Google Scholar 

  18. G. Zhang, W. Zhang, J. Crittenden, et al., J. Renewable Sustainable Energy 6, 033131 (2014).

  19. H. Yan, J. Yang, G. Ma, et al., J. Catal. 266, 165 (2009).

    Article  CAS  Google Scholar 

  20. M. J. Berr, A. Vaneski, C. Mauser, et al., Small 8, 291 (2012).

    Article  CAS  Google Scholar 

  21. J. A. Nasir, Z. Rehman, S. N. A. Shah, et al., J. Mater. Chem. A 8, 20752 (2020).

    Article  CAS  Google Scholar 

  22. Y. X. Li, Y. Z. Me, S. Q. Peng, et al., Chemosphere 63, 1312 (2006).

    Article  CAS  Google Scholar 

  23. H. Bahruji, M. Bowker, P. R. Davies, et al., J. Photochem. Photobiol., A 216, 115 (2010).

    Article  CAS  Google Scholar 

  24. F. Lv and W. Hung, Cell Rep. Phys. Sci. 2, 100652 (2021).

  25. C. Zhang, S. Chu, B. Liu, et al., Appl. Surf. Sci. 569, 150987 (2021).

  26. Y. Chen, D. Yang, Y. Gao, et al., AAAS Res., 9798564 (2021).

  27. X. Liu, M. Sayed, C. Bie, et al., J. Materiomics 7, 419 (2021).

    Article  CAS  Google Scholar 

  28. S. E. Braslavsky, A. M. Braun, A. E. Cassano, et al., Pure Appl. Chem. 83, 913 (2011).

    Article  Google Scholar 

  29. V. M. Arakelyan, V. M. Arutyunyan, G. E. Shakhnazaryan, et al., Al’tern. Energet. Ekol. 43 (11), 78 (2006).

    Google Scholar 

  30. O. A. Fedyaeva and E. G. Poshelyuzhnya, Russ. J. Phys. Chem. A 92, 1636 (2018).

    Article  CAS  Google Scholar 

  31. O. A. Fedyaeva, E. G. Poshelyuzhnya, and M. V. Trenikhin, Russ. J. Phys. Chem. A 92, 1457 (2018).

    Article  CAS  Google Scholar 

  32. Practical Guide on Physical Chemistry, Ed. by I. V. Kudryashov (Vyssh. Shkola, Moscow, 1986) [in Russian].

    Google Scholar 

  33. G. A. Golikov, Manual of Physical Chemistry (Vyssh. Shkola, Moscow, 1988) [in Russian].

    Google Scholar 

  34. Short Handbook of Physical Chemical Values, Ed. by A. A. Ravdel’ and A. M. Ponomareva (Ivan Fedorov, St. Petersburg, 2003) [in Russian].

  35. Unified Methods for Water Analysis, Ed. by Yu. Yu. Lur’e (Vyssh. Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Fedyaeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedyaeva, O.A., Poshelyuzhnaya, E.G. Photocatalytic Reduction of Water by Particles of Cadmium Sulfide in a Solution of Sodium Sulfite. Russ. J. Phys. Chem. 96, 2038–2042 (2022). https://doi.org/10.1134/S0036024422090096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422090096

Keywords:

Navigation