Log in

Oxidative Desulfurization of Dibenzothiophene Using M/TiO2/MWW (M = Cu, Ag, and Au) Composite

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Zeolite MWW was synthesized by microwave and hydrothermal method, and used as the support on which M/TiO2 (M = Cu, Ag, and Au) was loaded via wet impregnation method. Dibenzothiophene (DBT) removal in mild conditions was studied on various catalysts: MWW, Cu/TiO2/MWW, Ag/TiO2/MWW, and Au/TiO2/MWW. Among the synthesized composites, Au/TiO2/MWW, Ag/TiO2/MWW, and Cu/TiO2/MWW had better performance. Also, the results indicated that Au/TiO2/MWW considerably outperformed MWW. Response surface methodology (RSM) with central composite design (CCD) was used to study the effects of Au/TiO2/MWW composite loading, H2O2 volume, and temperature. Finally, the optimal conditions providing the highest conversion of sulfur (99.99%) were determined as 0.24 g Au/TiO2/MWW, 0.26 mL H2O2 and temperature of 59.4°C. Based on the results, Au/TiO2/MWW composite was shown to be an efficient catalyst for oxidation of sulfur heterocycles. The results of kinetic study indicated that pseudo first-order model has a good agreement with the experimental data. The desulfurization of gas condensate was studied under optimal conditions. The desulfurization efficiency over Au/TiO2/MWW catalyst was 89.11%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Sh. Liu, B. Wang, B. Cui, and L. Sun, Fuel 87, 422 (2008).

    Article  CAS  Google Scholar 

  2. D. Zhao, J. Wang, and E. Zhou, Green Chem. 9, 1219 (2007).

    Article  CAS  Google Scholar 

  3. R. Wang, G. Zhang, and H. Zhao, Catal. Today 149, 117 (2010).

    Article  CAS  Google Scholar 

  4. J. Hyung Kim, X. Ma, A. Zhou, and Ch. Song, Catal. Today 111, 74 (2006).

    Article  Google Scholar 

  5. P. S. Kulkarni and C. A. M. Afonso, Green Chem. 12, 1139 (2010).

    Article  CAS  Google Scholar 

  6. R. T. Wincek, J. P. Abrahamson, and S. Eser, Energy Fuels 30, 6281 (2016).

    Article  CAS  Google Scholar 

  7. B. Pouladi, M. A. Fanaei, and Gh. Baghmisheh, J. Clean. Produc. 209, 965 (2019).

    Article  CAS  Google Scholar 

  8. I. Ahmed and S. Hwa Jhung, J. Hazard. Mater. 301, 259 (2016).

    Article  CAS  Google Scholar 

  9. Zh. Yi, X. Ma, J. Song, X. Yang, and Q. Tang, Ultrason. Sonochem. 54, 110 (2019).

    Article  CAS  Google Scholar 

  10. Q. Wang, T. Zhang, Sh. Zhang, Y. Fan, and B. Chen, Sep. Purif. Technol. 231, 115923 (2020).

    Article  CAS  Google Scholar 

  11. A. Ates, G. Azimi, K. H. Choi, W. H. Green, and M. T. Timko, Appl. Catal. B 147, 144 (2014).

    Article  CAS  Google Scholar 

  12. J. Low, B. Cheng, and J. Yu, Appl. Surf. Sci. 392, 658 (2017).

    Article  CAS  Google Scholar 

  13. N. Elmi Fard and R. Fazaeli, Russ. J. Phys. Chem. A 92, 2835 (2019).

    Article  Google Scholar 

  14. J. Fei and J. Li, Adv. Mater. 27, 314 (2015).

    Article  CAS  Google Scholar 

  15. R. Zanella, E. Avella, R. M. Ramírez Zamora, F. Castillón-Barraza, and J. C. Durán-Álvarez, J. Environ. Technol. 39, 2353 (2018).

    Article  CAS  Google Scholar 

  16. M. Daté and M. Haruta, J. Catal. 201, 221 (2001).

    Article  Google Scholar 

  17. J. Přech, P. Pizarro, D. P. Serrano, and J. Čejka, Chem. Soc. Rev. 47, 8263 (2018).

    Article  Google Scholar 

  18. N. Elmi Fard, R. Fazaeli, M. Yousefi, and Sh. Abdolmohammadi, Appl. Phys. A 125, 632 (2019).

    Article  Google Scholar 

  19. P. Wu, H. Xu, L. Xu, Y. Liu, and M. He, Springer, Heidelberg (2013).

  20. N. Kashi, N. Elmi Fard, and R. Fazaeli, Russ. J. Appl. Chem. 90, 977 (2017).

    Article  CAS  Google Scholar 

  21. B. E. Warren, X-ray Diffraction (Dover, New York, 1990).

    Google Scholar 

  22. E. M. Samsudin and S. B. A. Hamid, Appl. Surf. Sci. 391, 326 (2017).

    Article  CAS  Google Scholar 

  23. T. M. K. Thandavan, S. M. A. Gani, Ch. S. Wong, and R. M. Nor, J. Nondestr. Eval. 34, 14 (2015)

  24. X. Hou, M. Shang, Y. Bi, and Z. Jiao, Mater. Lett. 176, 270 (2016).

    Article  CAS  Google Scholar 

  25. N. Elmi Fard, R. Fazaeli, and R. Ghiasi, Chem. Eng. Technol. 39, 149 (2016).

    Article  Google Scholar 

  26. W. **e, Y. Zheng, S. Zhao, J. Yang, Y. Liu, and P. Wu, Catal. Today 157, 114 (2010).

    Article  CAS  Google Scholar 

  27. X. Si, S. Cheng, Y. Lu, G. Gao, and M.-Y. He, Catal. Lett. 122, 321 (2008).

    Article  CAS  Google Scholar 

  28. M. Zarrabi and M. H. Entezari, J. Colloid Interface Sci. 457, 353 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Narges Elmi Fard or Reza Fazaeli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fard, N.E., Fazaeli, R., Yousefi, M. et al. Oxidative Desulfurization of Dibenzothiophene Using M/TiO2/MWW (M = Cu, Ag, and Au) Composite. Russ. J. Phys. Chem. 95 (Suppl 1), S23–S32 (2021). https://doi.org/10.1134/S0036024421140065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421140065

Keywords:

Navigation