Log in

Modifying Suspensions for the Electrophoretic Deposition of BaCe0.5Zr0.3Y0.1Yb0.1O3–δ Solid Electrolyte

  • COLLOIDAL CHEMISTRY AND ELECTROCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Powder of proton-conducting BaCe0.5Zr0.3Y0.1Yb0.1O3−δ (BCZYYbO) electrolyte is synthesized using the citrate–nitrate technique. The dispersity of the BCZYYbO suspension in a mixed medium (isopropanol/acetylacetone 70/30 vol %) is investigated. The effects of ultrasonic treatment and centrifuging on the size distribution of aggregates and the effective hydrodynamic diameter are determined. The suspension is characterized by a bimodal size distribution of aggregates. The zeta potential values are determined for the initial BCZYYbO suspension (+7 mV), a suspension with the addition of molecular iodine (0.4 g/L) (+7 mV), and suspensions of the modified initial powder (1 wt % of copper oxide BCZYYbO_CuO) (+11 mV) of the same concentration (15 g/L). It is found that adding iodine does not affect the value of the zeta potential; however it does affects the pH of the suspension. In contrast to the modified suspensions, it is impossible to conduct EPD from the initial BCZYYbO suspension. A refinement is proposed to transform the EPD mechanism from a nonaqueous suspension with the participation of iodine and the trace water content associated with the change in the concentration of H+ and I ions adsorbed on the particles in the BCZYYbO suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Hossain, A. M. Abdalla, S. N. B. Jamain, et al., Renewable Sustainable Energy Rev. 79, 750 (2017). https://doi.org/10.1016/j.rser.2017.05.147

    Article  CAS  Google Scholar 

  2. A. Tarancón, Energies 2, 1130 (2009). https://doi.org/10.3390/en20401130

    Article  CAS  Google Scholar 

  3. E. Pikalova and E. Kalinina, J. Energy Prod. Mgm. 4, 1 (2019). https://doi.org/10.2495/EQ-V4-N1-1-27

    Article  Google Scholar 

  4. D. A. Medvedev and S. Ricote, J. Solid State Electrochem. 24, 1445 (2020). https://doi.org/10.1007/s10008-020-04655-6

    Article  CAS  Google Scholar 

  5. J. Lyagaeva, B. Antonov, L. Dunyushkina, et al., Electrochim. Acta 192, 80 (2016). https://doi.org/10.1016/j.electacta.2016.01.144

    Article  CAS  Google Scholar 

  6. J. Lyagaeva, G. Vdovin, L. Hakimova, et al., Electrochim. Acta 23, 554 (2017). https://doi.org/10.1016/j.electacta.2017.08.149

    Article  CAS  Google Scholar 

  7. Y. Zhang, D. **e, B. Chi, et al., Asia Pacif. J. Chem. Eng. 14, e2322 (2019). https://doi.org/10.1002/apj.2322

    Article  CAS  Google Scholar 

  8. D. Medvedev, J. Lyagaeva, S. Plaksin, et al., J. Power Sources 273, 716 (2015). https://doi.org/10.1016/j.jpowsour.2014.09.116

    Article  CAS  Google Scholar 

  9. L. Yang, S. Wang, K. Blinn, et al., Science (Washington, DC, U. S.) 326, 126 (2009). https://doi.org/10.1126/science.1174811

    Article  CAS  Google Scholar 

  10. B. Shri Prakash, R. Pavitra, S. Senthil Kumar, et al., J. Power Sources 381, 136 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.003

    Article  CAS  Google Scholar 

  11. E. Yu. Pikalova and E. G. Kalinina, Russ. Chem. Rev. 90, 703 (2021). https://doi.org/10.1070/RCR4966

  12. M. Ananyev, D. Medvedev, A. Gavrilyuk, et al., Electrochim. Acta 125, 371 (2014). https://doi.org/10.1016/j.electacta.2013.12.161

    Article  CAS  Google Scholar 

  13. D. Gao and R. Guo, J. Alloys Compd. 493, 288 (2010). https://doi.org/10.1016/j.jallcom.2009.12.082

    Article  CAS  Google Scholar 

  14. A. Afif, N. Radenahmad, J. Zaini, et al., Process. Appl. Ceram. 12, 180 (2018). https://doi.org/10.2298/PAC1802180A

    Article  CAS  Google Scholar 

  15. B. Wang, L. Bi, and X. S. Zhao, J. Power Sources 399, 207 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.087

    Article  CAS  Google Scholar 

  16. Y. G. Lyagaeva, D. A. Medvedev, A. K. Demin, T. V. Yaroslavtseva, S. V. Plaksin, and N. M. Porotnikova, Semiconductors 48, 1353 (2014). https://doi.org/10.1134/S1063782614100182

    Article  CAS  Google Scholar 

  17. H. Dai, H. Kou, H. Wang, and L. Bi, Electrochem. Commun. 96, 11 (2018). https://doi.org/10.1016/j.elecom.2018.09.001

    Article  CAS  Google Scholar 

  18. E. Yu. Pikalova and E. G. Kalinina, Renewable Sustainable Energy Rev. 116, 109440 (2019). https://doi.org/10.1016/j.rser.2019.109440

    Article  CAS  Google Scholar 

  19. E. G. Kalinina and E. Yu. Pikalova, Russ. Chem. Rev. 88, 1179 (2019). https://doi.org/10.1070/RCR4889

    Article  CAS  Google Scholar 

  20. C. Argirusis, J. Grosse-Brauckmann, G. Sourkouni, et al., Key Eng. Mater. 412, 125 (2009). https://doi.org/10.4028/www.scientific.net/KEM.412.125

    Article  CAS  Google Scholar 

  21. E. D. Bartolomeo, M. Zunic, L. Chevallier, et al., J. Electrochem. Soc. 25, 577 (2009). https://doi.org/10.1149/1.3205569

    Article  Google Scholar 

  22. Y. Itagaki, Y. Yamamoto, H. Aono, et al., J. Ceram. Soc. Jpn. 125, 528 (2017). https://doi.org/10.2109/jcersj2.17048

    Article  CAS  Google Scholar 

  23. F. Chen and M. Liu, J. Eur. Ceram. Soc. 21, 127 (2001). https://doi.org/10.1016/S0955-2219(00)00195-3

    Article  CAS  Google Scholar 

  24. T. Ishihara, K. Sato, and Y. Takita, J. Am. Ceram. Soc. 79, 913 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08525.x

    Article  CAS  Google Scholar 

  25. C. Kleinlogel and L. J. Gauckler, Solid State Ionics 135, 567 (2000). https://doi.org/10.1016/S0167-2738(00)00437-9

    Article  CAS  Google Scholar 

  26. E. Kalinina, A. Kolchugin, K. Shubin, et al., Appl. Sci. 10, 6535 (2020). https://doi.org/10.3390/app10186535

    Article  CAS  Google Scholar 

  27. D. De and P. S. Nicholson, J. Am. Ceram. Soc. 82, 3031 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02198.x

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank Prof. A.P. Safronov for his help with our DLS measurements.

The study was carried out on the equipment of the Shared Access Center of the IEP UB RAS.

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00151. Investigation of the kinetic properties of the suspensions was performed within the framework of the state assignment of IEP UB RAS (EPD thin-layer coatings, no. АААА-А19-119061090040-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. G. Kalinina.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinina, E.G., Pikalova, E.Y. Modifying Suspensions for the Electrophoretic Deposition of BaCe0.5Zr0.3Y0.1Yb0.1O3–δ Solid Electrolyte. Russ. J. Phys. Chem. 95, 1942–1947 (2021). https://doi.org/10.1134/S0036024421090077

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421090077

Keywords:

Navigation