Log in

Theoretical studies on magnetic properties of a binuclear paddle wheel Cu(II) complex {Cu22-O2CCH3)4}(OCNH2CH3)2

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The magnetic properties of a binuclear copper(II) complex {Cu22-O2CCH3)4}(OCNH2CH3)2 have been investigated on the basis of density functional theory with the broken symmetry (BS) approach. The magnetic coupling constant J values for the investigated complex have been calculated by different methods (HF, m06, PBE, B3LYP, B3PW91, B3P86, BLYP, BPW91, BP86) and basis sets (TZVP, TZV, 6-31G, 6-31++G) for the metal centers, and SVP basis set for the other atoms. The best calculated J value is‒142.6 cm−1, which is in the excellent agreement with the experimental value (J = −101 ± 2 cm−1). By investigating the spin density distribution from the magnetic centers to the atoms of ligands and the singly occupied molecular orbitals (SOMOs) of the Cu(II) ions at the low spin group states, we found that there is a spin delocalization between the Cu(II) ions and acetate ligands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Costa, R. Valero, D. R. Mañeru, I. D. P. Moreira, and F. Illas, J. Chem. Comput. 11, 1006 (2015).

    CAS  Google Scholar 

  2. H. Li, E. N. Brothers, and M. B. Hall, Inorg. Chem. 53, 9679 (2014).

    Article  CAS  Google Scholar 

  3. L. Noodleman, W. G. Han Du, J. A. Fee, A. W. Götz, and R. C. Walker, Inorg. Chem. 53, 6458 (2014).

    Article  CAS  Google Scholar 

  4. T. Saito, N. Yasuda, S. Nishihara, S. Yamanaka, Y. Kitagawa, T. Kawakami, and K. Yamaguchi, Chem. Phys. Lett. 505, 11 (2011).

    Article  CAS  Google Scholar 

  5. D. E. Ferreira, W. B. de Almeida, A. Neves, and W. R. Rocha, Comput. Chem. 979, 89 (2012).

    CAS  Google Scholar 

  6. E. Coulaud, N. Guihéry, J. P. Malrieu, D. Hagebaum-Reignier, D. Siri, and N. Ferré, J. Chem. Phys. 137, 114106 (2012).

    Article  Google Scholar 

  7. E. Ruiz, P. Alemany, and S. Alvarez, J. Am. Chem. Soc. 119, 1297 (1997).

    Article  CAS  Google Scholar 

  8. F. Illas, I. P. Moreira, and V. Barone, Theor. Chem. Acc. 104, 265 (2000).

    Article  CAS  Google Scholar 

  9. C. Benelli and D. Gatteschi, Chem. Rev. 102, 2369 (2002).

    Article  CAS  Google Scholar 

  10. H. Matsuzaki, T. Matsuoka, H. Kishida, K. Takizawa, and H. Miyasaka, Phys. Rev. Lett. 90, 046401 (2003).

    Article  CAS  Google Scholar 

  11. E. Berti, A. Caneschi, C. Daiguebonne, et al., Inorg. Chem. 42, 348 (2003).

    Article  CAS  Google Scholar 

  12. S. X. Liu, C. Ambrus, S. Dolder, A. Neels, and S. Decurtins, Inorg. Chem. 45, 9622 (2006).

    Article  CAS  Google Scholar 

  13. V. Paredes-García, R. C. Santana, R. Madrid, A. Vega, et al., Inorg. Chem. 52, 8369 (2013).

    Article  Google Scholar 

  14. S. X. Cui, M. H Zuo, H. Y. Wang, et al., Z. Anorg. Allg. Chem. 641, 1540 (2015).

    Article  CAS  Google Scholar 

  15. J. E. Weder, T. W. Hambley, B. J. Kennedy, et al., Inorg. Chem. 38, 1736 (1999).

    Article  CAS  Google Scholar 

  16. D. L. Reger, A. E. Pascui, M. D. Smith, et al., Inorg. Chem. 54, 1487 (2015).

    Article  CAS  Google Scholar 

  17. H. Yang, X. M. Sun, and X. M. Ren, Polyhedron 83, 24 (2014).

    Article  CAS  Google Scholar 

  18. D. L. Reger, A. E. Pascui, M. D. Smith, et al., Inorg. Chem. 51, 7966 (2012).

    Article  CAS  Google Scholar 

  19. I. Negodaev, C. de Graaf, R. Caballol, and V. V. Lukov, Inorg. Chim. Acta 375, 166 (2011).

    Article  CAS  Google Scholar 

  20. H. Hu, X. Yang, and Z. Chen, J. Mol. Struct.: THEOCHEM 618, 41 (2002).

    Article  CAS  Google Scholar 

  21. M. E. Ali and S. N. Datta, J. Mol. Struct.: THEOCHEM 775, 19 (2006).

    Article  Google Scholar 

  22. Z. C. Hu, H. Y. Wei, and Z. D. Chen, J. Mol. Struct.: THEOCHEM 668, 235 (2004).

    Article  CAS  Google Scholar 

  23. E. A. Noh and J. Zhang, Chem. Phys. 330, 82 (2006).

    Article  CAS  Google Scholar 

  24. T. F. Miao, S. Li, and J. H. Cai, J. Mol. Struct.: THEOCHEM 855, 45 (2008).

    Article  CAS  Google Scholar 

  25. N. K. Shee, R. Verma, D. Kumar, and D. Datta, Comput. Theor. Chem. 1061, 1 (2015).

    Article  CAS  Google Scholar 

  26. R. P. Doyle, M. Julve, and F. Lloret, Dalton Trans., 2081 (2006).

  27. S. Meskaldji, A. Zaiter, L. Belkhiri, and A. Boucekkine, Theor. Chem. Acc. 131, 1151 (2012).

    Article  Google Scholar 

  28. S. T. Min, K. Zhou, and G. L. Xue, Russ. J. Phys. Chem. A 88, 823 (2014).

    Article  CAS  Google Scholar 

  29. Y. Kitagawa, T. Matsui, and Y. Nakanishi, Dalton Trans. 42, 16200 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, S.X., Wang, H.Y., Xu, J. et al. Theoretical studies on magnetic properties of a binuclear paddle wheel Cu(II) complex {Cu22-O2CCH3)4}(OCNH2CH3)2 . Russ. J. Phys. Chem. 91, 1070–1075 (2017). https://doi.org/10.1134/S0036024417060085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417060085

Keywords

Navigation