Log in

Theoretical study on electronic structures and spectroscopic regularities of ethylated single-walled carbon nanotubes

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The electronic structures of a series of ethylated single-walled carbon nanotubes (SWCNTs) were studied using density; function theory (DFT) at B3LYP/6-31G(d) level. The bond vertical to the main axis of the SWCNT was predicted to be the most thermodynamically stable additive site by ethylene. The energy gaps of the ethylated SWCNTs decrease with the decrease in the symmetries after the addition. The C-C and C=C stretching vibrations in the IR spectra of the ethylated SWCNTs, compared with those in the IR spectra of the pristine SWCNTs, are red-shifted. The chemical shifts at 172.9 ppm of the bridged carbon atoms in the NMR spectrum of (3,3)-C2H4(v) (C36C2H4) are shifted downfield in comparison with those at 144.7 ppm of the same carbon atoms in (3,3) (C36). Meanwhile, (3,3)-C2H4(v) (C36C2H4) shows a weakened anti-aromaticity owing to a nuclear independent chemical shift (NICS) at 3.6 ppm, relative to the NICS value at 6.3 ppm of (3,3) (C36).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Lu and Z. Chen, Chem. Rev. 105, 3643 (2005).

    Article  CAS  Google Scholar 

  2. M. F. Budyka, T. S. Zyubina, A. G. Ryabenko, S. H. Lin, and A. M. Mebel, Chem. Phys. Lett. 407, 266 (2004).

    Article  Google Scholar 

  3. C. Garau, A. Frontera, D. Quinonero, A. Costa, P. Ballester, and P. M. Deyà, Chem. Phys. 303, 265 (2004).

    Article  CAS  Google Scholar 

  4. M. Burghard, Surf. Sci. Rep. 58, 1 (2005).

    CAS  Google Scholar 

  5. J. Wei, F. Hu, H. Zeng, P. Zhou, W. Yang, and P. Peng, Phys. E 40, 462 (2005).

    Article  Google Scholar 

  6. S. Gotovac, H. Honda, Y. Hattori, K. Takahashi, H. Kanoh, and K. Kaneko, Nano Lett. 7, 583 (2007).

    Article  CAS  Google Scholar 

  7. P. A. Denis, Chem. Phys. 353, 79 (2008).

    Article  CAS  Google Scholar 

  8. P. A. Denis and R. Faccio, Chem. Phys. Lett. 460, 486 (2008).

    Article  CAS  Google Scholar 

  9. B. Akdim, T. Kar, X. Duan, and R. Pachter, Chem. Phys. Lett. 445, 281 (2007).

    Article  CAS  Google Scholar 

  10. X. Wu and X. C. Zeng, ACS Nano 2, 1459 (2008).

    Article  CAS  Google Scholar 

  11. Gaussian 03, Rev. B 01 (Gaussian Inc, Pittsburgh, PA, 2003).

  12. Z. Wang, and S. Wu, Chem. Pap. 61, 313 (2007).

    Article  CAS  Google Scholar 

  13. X. Ren, Z. Luo, J. Du, and S. Wu, Russ. J. Phys. Chem. A 84, 826 (2010).

    Article  CAS  Google Scholar 

  14. H. Zhao, J. Zhou, L. Hu, and Q. Teng, Chin. J. Chem. 27, 1687 (2009).

    Article  CAS  Google Scholar 

  15. Z. Zhu, S. Wu, and Y. Zhang, Russ. J. Phys. Chem. A 82, 2293 (2008).

    Article  CAS  Google Scholar 

  16. L. Ding, Y. Ding, Q. Teng, and K. Wang, Chin. J. Chem. 26, 97 (2008).

    Article  CAS  Google Scholar 

  17. L. Ding, Y. Ding, Q. Teng, and K. Wang, J. Chin. Chem. Soc. 54, 853 (2007).

    CAS  Google Scholar 

  18. C. Yan, N. Su, and S. Wu, Russ. J. Phys. Chem. A 81, 1980 (2007).

    Article  CAS  Google Scholar 

  19. Y. Zhang, T. Li, and Q. Teng, Chin. J. Chem. 26, 1567 (2008).

    Article  CAS  Google Scholar 

  20. H. Sun, X. Yun, S. Wu, and Q. Teng, J. Mol. Struct. (Theochem) 868, 71 (2008).

    Article  CAS  Google Scholar 

  21. H. Sun, S. Wu, and X. Ren, J. Mol. Struct. (Theochem) 855, 6 (2008).

    Article  CAS  Google Scholar 

  22. Y. Ding, P. Gao, L. Qin, and Q. Teng, Int. J. Quant. Chem. 109, 693 (2009).

    Article  CAS  Google Scholar 

  23. N. Su, Q. Guo, and S. Wu, Ind. J. Chem. Sec. A 47, 1473 (2008).

    Google Scholar 

  24. Yu. V. Babin, A. V. Prisyazhnyuk, and Yu. A. Ustynyuk, Russ. J. Phys. Chem. A 82, 94 (2008).

    Article  CAS  Google Scholar 

  25. E. A. Fushman, S. S. Lalayan, A. D. Margolin, and L. Yu. Ustynyuk, Russ. J. Phys. Chem. A 82, 351 (2008).

    Google Scholar 

  26. G. V. Girichev, N. V. Tverdova, and N. I. Giricheva, Russ. J. Phys. Chem. A 81, 672 (2007).

    Google Scholar 

  27. D. A. Pichugina, A. F. Shestakov, and N. E. Kuz’menko, Russ. J. Phys. Chem. A 81, 883 (2007).

    Article  CAS  Google Scholar 

  28. L. S. Karpushenkava and G. Ya. Kabo, Russ. J. Phys. Chem. A 82, 1321 (2008).

    Article  Google Scholar 

  29. N. N. Vlasova, L. P. Golovkova, and O. V. Severinovskaya, Russ. J. Phys. Chem. A 81, 1136 (2007).

    Article  Google Scholar 

  30. P. V. R. Schleyer, C. Maerker, A. Dransfeld, H. Jiao, and N. J. R. V. E. Hommes, J. Am. Chem. Soc. 118, 6317 (1996).

    Article  CAS  Google Scholar 

  31. A. Kongkanand and P. V. Kamat, J. Phys. Chem. C 111, 9012 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Wu.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Y., Yuan, S., Xu, J. et al. Theoretical study on electronic structures and spectroscopic regularities of ethylated single-walled carbon nanotubes. Russ. J. Phys. Chem. 85, 1031–1036 (2011). https://doi.org/10.1134/S0036024411060355

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024411060355

Keywords

Navigation