Log in

The influence of pressure on the structure of aqueous solutions of NaCl over the pressure range 0.1–1000 MPa according to the integral equation method

  • Physical Chemistry of Solutions
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The influence of pressure (0.1–1000 MPa) on the structure of aqueous solutions of NaCl (1.91–3.08 m) at constant temperatures of 298 and 623 K was studied by the integral equation method. The most substantial structural rearrangement was found to occur at pressures exceeding 150 MPa. Solution structure formation at 298 K was characterized by a substantial decrease in interparticle distances and a baric distortion of the tetrahedral network of water, which resulted in an increase in the hydration of ions and a decrease in the fraction of ion pairs. Structure changes under compression conditions at 623 K were similar to those observed at 298 K, but the network of water H-bonds was already destroyed in solutions at the higher temperature, and hydration-separated ion pairs did not form over the whole pressure range studied. Ions partially dehydrated at 623 K virtually fully restored the hydration spheres they had at 298 K as the pressure increased to 1000 MPa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Meade and R. Jeanloz, Science (Washington, D.C.) 252(1), 68 (1991).

    Article  ADS  Google Scholar 

  2. C. R. Bina and A. Navrotsky, Nature (London) 408(6814), 844 (2000).

    Article  ADS  CAS  Google Scholar 

  3. R. H. Byrne and S. H. Laurie, Pure Appl. Chem. 71(5), 871 (1999).

    CAS  Google Scholar 

  4. Inorganic High Pressure Chemistry: Kinetics and Mechanisms, Ed. by R. van Eldik (Elsevier, Amsterdam, 1986).

    Google Scholar 

  5. T. W. Swaddle, Can. J. Phys. 73, 258 (1995).

    ADS  CAS  Google Scholar 

  6. T. W. Swaddle, J. Mol. Liq. 65/66, 237 (1995).

    Article  CAS  Google Scholar 

  7. J. Barciszewski, J. Jurczak, S. Porowski, et al., Eur. J. Biochem. 260(2), 293 (1999).

    Article  PubMed  CAS  Google Scholar 

  8. A. M. Blokh, Structure of Water and Biological Processes (Nedra, Moscow, 1969) [in Russian].

    Google Scholar 

  9. Chemistry and Geochemistry of Solutions at High Temperatures and Pressures: Physics and Chemistry of the Earth, Ed. by D. T. Rickard and F. W. Wickman (Pergamon, Oxford, 1981).

    Google Scholar 

  10. K. Tödheide, Ber. Bunsen-Ges. Phys. Chem. 70(9–10), 1022 (1966).

    Google Scholar 

  11. M. Nakahara and J. Osugi, Rev. Phys. Chem. Jpn. 50(2), 66 (1980).

    Google Scholar 

  12. Thermodynamic Properties of Solutions under Extremal Conditions: Interuniversity Collection of Papers (Ivanovsk. Khim.-Tekhnol. Inst., Ivanovo, 1986) [in Russian].

  13. S. Sawamura, Y. Yoshimura, K. Kitamura, et al., J. Phys. Chem. 96(13), 5526 (1992).

    Article  CAS  Google Scholar 

  14. N. A. Nevolina, O. Ya. Samoilov, and A. L. Seifer, Zh. Struct. Khim. 10(2), 203 (1969).

    CAS  Google Scholar 

  15. N. A. Nevolina, O. Ya. Samoilov, and A. L. Seifer, Zh. Struct. Khim. 14(2), 360 (1973).

    Google Scholar 

  16. A. K. Lyashchenko and B. R. Churagulov, Zh. Neorg. Khim. 26(5), 1190 (1981).

    CAS  Google Scholar 

  17. A. K. Lyashchenko and B. R. Churagulov, Zh. Neorg. Khim. 28(2), 456 (1983).

    CAS  Google Scholar 

  18. R. A. Horne and D. S. Johnsone, J. Phys. Chem. 71(4), 1147 (1967).

    Article  Google Scholar 

  19. K. E. Bett and J. B. Cappi, Nature (London), No. 207, 620 (1965).

  20. A. I. Toryanik and N. G. Malyuk, in Thermodynamics and Structure of Solutions: Interuniversity Collection of Papers (Ivanovsk. Khim.-Tekhnol. Inst., Ivanovo, 1976), No. 4, p. 106 [in Russian].

    Google Scholar 

  21. Yu. E. Gorbatyi and Yu. N. Dem’yanets, Dokl. Akad. Nauk SSSR 260(4), 911 (1981).

    CAS  Google Scholar 

  22. Yu. E. Gorbatyi and Yu. N. Dem’yanets, Dokl. Akad. Nauk SSSR 275(4), 903 (1984).

    CAS  Google Scholar 

  23. Yu. E. Gorbaty and Yu. N. Demianets, Mol. Phys. 55(3), 571 (1985).

    Article  Google Scholar 

  24. A. Y. Wu, E. Whalley, and G. Dolling, Mol. Phys. 47, 603 (1982).

    Article  CAS  Google Scholar 

  25. A. V. Okhulkov, Yu. N. Demianets, and Yu. E. Gorbaty, J. Chem. Phys. 100(2), 1578 (1994).

    Article  ADS  CAS  Google Scholar 

  26. J. H. Eggert, G. Weck, P. Loubeyre, et al., Phys. Rev. B: Condens. Matter 65(17), 174105 (2002).

    Google Scholar 

  27. J. H. Eggert, G. Weck, and P. Loubeyre, J. Phys.: Condens. Matter 14, 11385 (2002).

    Google Scholar 

  28. M. C. Bellissent-Funel and L. Bosio, J. Chem. Phys. 102(9), 3727 (1995).

    Article  ADS  CAS  Google Scholar 

  29. A. Botti, F. Bruni, M. A. Ricci, et al., J. Chem. Phys. 109(7), 3180 (1998).

    Article  ADS  CAS  Google Scholar 

  30. A. K. Soper and M. A. Ricci, Phys. Rev. Lett. 84, 2881 (2000).

    Article  PubMed  ADS  CAS  Google Scholar 

  31. G. W. Neilson, Chem. Phys. Lett. 68(2–3), 247 (1979).

    Article  ADS  CAS  Google Scholar 

  32. S. L. Wallen, B. J. Palmer, D. Pfund, et al., J. Phys. Chem. A 101(50), 9632 (1997).

    Article  CAS  Google Scholar 

  33. A. Filipponi, S. de Panfilis, C. Oliva, et al., Phys. Rev. Lett. 91(16), 165505 (2003).

  34. G. Jancso, K. Heinzinger, and P. Bopp, Z. Naturforsch., A: Phys. Sci. 40, 1235 (1985).

    Google Scholar 

  35. G. Jancso, K. Heinzinger, and T. Radnai, Chem. Phys. Lett. 110(2), 196 (1984).

    Article  ADS  CAS  Google Scholar 

  36. G. I. Szasz and K. Heinzinger, Earth Planet. Sci. Lett. 64, 163 (1983).

    Article  ADS  CAS  Google Scholar 

  37. D. G. Bounds, Mol. Phys. 54(6), 1335 (1985).

    Article  CAS  Google Scholar 

  38. J. P. Brodholt, Chem. Geol. 151, 11 (1998).

    Article  CAS  Google Scholar 

  39. M. T. Reagan, J. G. Harris, and W. J. Tester, J. Phys. Chem. B 103(37), 7935 (1999).

    Article  CAS  Google Scholar 

  40. A. A. Chialvo and P. T. Cummings, in Advances in Chemical Physics, Ed. by I. Prigogine and S. A. Rice (Wiley, New York, 1999), Vol. 109, p. 115.

    Chapter  Google Scholar 

  41. A. G. Kalinichev, Molecular Modeling Theory: Application in the Geosciences, Vol. 42 of Reviews in Mineralogy and Geochemistry, Ed. by R. T. Cygan and J. D. Kubicki (Mineralogical Society of America, Washington, D.C., 2001), p. 83.

    Google Scholar 

  42. M. V. Fedotova and V. N. Trostin, Zh. Fiz. Khim. 73(6), 1025 (1999) [Russ. J. Phys. Chem. 73 (6), 905 (1999)].

    CAS  Google Scholar 

  43. M. V. Fedotova, R. D. Oparin, and V. N. Trostin, J. Mol. Liq. 91, 123 (2001).

    Article  CAS  Google Scholar 

  44. D. Chandler and H. C. Andersen, J. Chem. Phys. 57(5), 1930 (1972).

    Article  CAS  Google Scholar 

  45. P. A. Monson and G. P. Morris, in Advances in Chemical Physics, Ed. by I. Prigogine and S. A. Rice (Wiley, New York, 1990), Vol. 77, p. 451.

    Chapter  Google Scholar 

  46. M. F. Holovko and Yu. V. Kalyuzhnyi, Mol. Phys. 68(6), 1239 (1989).

    Article  Google Scholar 

  47. S. Labic, A. Malijevsky, and P. Vonka, Mol. Phys. 56(3), 709 (1985).

    Article  Google Scholar 

  48. B. M. Pettitt and D. F. Calef, J. Phys. Chem., 91(6), 1541 (1987).

    Article  CAS  Google Scholar 

  49. D. F. Calef and B. M. Pettitt, Chem. Phys. Lett. 139, 129 (1987).

    Article  ADS  CAS  Google Scholar 

  50. M. F. Holovko, Yu. V. Kalyuzhny, and K. Heinzinger, Z. Naturforsch., A: Phys. Sci. 45, 687 (1990).

    Google Scholar 

  51. Yu. V. Kalyuzhnyi, M. V. Fedotova, M. F. Golovko, et al., Preprint of Inst. of Teoretical Physics, Kiev, 1991, No. 91-19R.

  52. T. Yamaguchi, S.-H. Chong, and F. Hirata, J. Chem. Phys. 119(2), 1021 (2003).

    Article  ADS  CAS  Google Scholar 

  53. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., in Jerusalem Symposium on Quantum Chemistry and Biochemistry, Ed. by B. Pullman (Reidel, Dordrecht, 1981), p. 331.

    Google Scholar 

  54. B. M. Pettitt and P. J. Rossky, J. Chem. Phys. 77(3), 1451 (1982).

    Article  ADS  CAS  Google Scholar 

  55. B. M. Pettitt and P. J. Rossky, J. Chem. Phys. 84(10), 5836 (1986).

    Article  ADS  CAS  Google Scholar 

  56. M. V. Fedotova, V. N. Trostin, and V. V. Kuznetsov, in Concentrated and Saturated Solutions, Ed. by A. M. Kutepov (Nauka, Moscow, 2002), p. 52 [in Russian].

    Google Scholar 

  57. O. Ya. Samoilov, The Structure of Aqueous Solutions of Electrolytes and Hydration of Ions (Akad. Nauk SSSR, Moscow, 1957) [in Russian].

    Google Scholar 

  58. A. K. Lyashchenko, Doctoral Dissertation in Chemistry (Kurnakov Inst. of General and Inorganic Chemistry, Russ. Acad. Sci., Moscow, 1987).

    Google Scholar 

  59. M. V. Fedotova, Doctoral Dissertation in Chemistry (Inst. of Solution Chemistry, Russ. Acad. Sci., Ivanovo, 2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.V. Fedotova, 2007, published in Zhurnal Fizicheskoi Khimii, 2007, Vol. 81, No. 5, pp. 836–842.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fedotova, M.V. The influence of pressure on the structure of aqueous solutions of NaCl over the pressure range 0.1–1000 MPa according to the integral equation method. Russ. J. Phys. Chem. 81, 721–726 (2007). https://doi.org/10.1134/S0036024407050111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024407050111

Keywords

Navigation