Log in

Substituted Phthalimides Linked to the Cymantrenyl Moiety: Molecules with Tunable Optical and Electrochemical Properties

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract—

The results of investigation of the optical and electrochemical properties of substituted phthalimides linked to a cymantrenyl moiety by IR and NMR spectroscopy, UV-Vis spectroscopy, and cyclic voltammetry and also by DFT calculations are presented. It was shown that the optical, donor-acceptor, and redox properties of the organometallic phthalimides are affected by substituents in position 1 of the side chain of the cymantrene Cp and in position 4 of the phthalimide benzene ring. The reactions of dicarbonyl chelates with external ligands in the dark attest to hemilability of the Mn–O=C(imide) bond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Jun-ichi Nishida, Yoshiki Morikawa, Akito Hashimoto, et al., Mater. Adv. 2, 7861 (2021). https://doi.org/10.1039/d1ma00716e

    Article  CAS  Google Scholar 

  2. Biao Chen, Xuepeng Zhang, Yucai Wang, et al., Chem. Asian J. 14, 751 (2019). https://doi.org/10.1002/asia.201801002

    Article  CAS  PubMed  Google Scholar 

  3. A. Georgiev, D. Yordanov, D. Dimov, et al., J. Photochem. Photobiol., A 393, 112443 (2020). https://doi.org/10.1016/j.jphotochem.2020.112443

    Article  CAS  Google Scholar 

  4. N. Venkatramaiah, G. Dinesh Kumar, Y. Chandrasekaran, et al., ACS Appl. Mater. Interfaces 10, 3838 (2018). https://doi.org/10.1021/acsami.7b11025

    Article  CAS  PubMed  Google Scholar 

  5. **aodong He, Lunxiang Yin, and Yanqin Li, New J. Chem. 43, 6577 (2019). https://doi.org/10.1039/C9NJ00600A

    Article  CAS  Google Scholar 

  6. Fanyong Yan, Chunhui Yi, Zhonghua Hao, et al., Surf. Colloids, A 650, 129626 (2022). https://doi.org/10.1016/j.colsurfa.2022.129626

  7. M. Zawadzka, P. Nitschke, M. Musiol, et al., Molecules 28, 1740 (2023). https://doi.org/10.3390/molecules28041740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. D. Çakal, S. Ertan, A. Cihaner, et al., Dyes Pigm. 161, 411 (2019). https://doi.org/10.1016/j.dyepig.2018.10.002

    Article  CAS  Google Scholar 

  9. Wei Lv, Huijiao Liu, Wen Wang et al., RSC Adv. 7, 18384 (2017). https://doi.org/10.1039/C6RA28757C

    Article  Google Scholar 

  10. Zhijun Li, Yong ** Jeong, Jisu Hong, et al., Appl. ACS, Mater. Interfaces 14, 7073 (2022). https://doi.org/10.1021/acsami.1c20278

    Article  CAS  Google Scholar 

  11. F. Dierschke, J. Jacob, and K. Mullen, Synth. Met. 156, 433 (2006). https://doi.org/10.1016/j.synthmet.2005.11.016

    Article  CAS  Google Scholar 

  12. Quanyou Feng, **aojun Zheng, Hongjian Wang, et al., Mater. Adv. 2, 4000 (2021). https://doi.org/10.1039/d1ma00181g

    Article  CAS  Google Scholar 

  13. R. Orita, M. Franckevicius, A. Vysniauskas, et al., Phys. Chem. Chem. Phys. 20, 16033 (2018). https://doi.org/10.1039/c8cp01999a

    Article  CAS  PubMed  Google Scholar 

  14. Taku Shoji, Nanami Iida, Akari Yamazaki, et al., Org. Biomol. Chem. 18, 2274 (2020). https://doi.org/10.1039/d0ob00164c

    Article  CAS  PubMed  Google Scholar 

  15. Yizhen Zhan, Xue Zhao, Wei Wang, et al., Dyes Pigm. 146, 240 (2017). https://doi.org/10.1016/j.dyepig.2017.07.013

    Article  CAS  Google Scholar 

  16. D. Singha, D. K. Sahu, K. Sahu, et al., J. Phys. Chem. B 122, 6966 (2018). https://doi.org/10.1021/acs.jpcb.8b03901

    Article  CAS  PubMed  Google Scholar 

  17. A. Tan, E. Bozkurt, Y. Kara, et al., J. Fluoresc. 27, 981 (2017). https://doi.org/10.1007/s10895-017-2033-2

    Article  CAS  PubMed  Google Scholar 

  18. D. Majhi, S. K. Das, P. K. Sahu, et al., Phys. Chem. Chem. Phys. 16, 18349 (2014). https://doi.org/10.1039/c4cp01912a

    Article  CAS  PubMed  Google Scholar 

  19. Yuanyuan Qin, Guo** Li, Ting Qi, et al., Mater. Chem. Front. 4, 1554 (2020). https://doi.org/10.1039/D0QM00084A

    Article  CAS  Google Scholar 

  20. E. S. Kelbysheva, T. V. Strelkova, M. G. Ezernitskaya, et al., Chem. Select 8, e202204162 (2023). https://doi.org/10.1002/slct.202204162

    Article  CAS  Google Scholar 

  21. E. S. Kelbysheva, L. N. Telegina, E. A. Ershova, et al., Russ. Chem. Bull. 66, 327 (2017). https://doi.org/10.1007/s11172-017-1735-6

    Article  CAS  Google Scholar 

  22. P. F. Yang and G. K. Yang, J. Am. Chem. Soc. 114, 6937 (1992). https://doi.org/10.1021/ja00043a061

    Article  CAS  Google Scholar 

  23. E. S. Kelbysheva, T. V. Strelkova, M. G. Ezernitskaya, et al., Chem. Select 6, 9861 (2021). https://doi.org/10.1002/slct.202102464

    Article  CAS  Google Scholar 

  24. E. S. Kelbysheva, L. N. Telegina, O. V. Abramova, et al., Russ. Chem. Bull. 11, 2646 (2015). https://doi.org/10.1007/s11172-015-1203-0

    Article  CAS  Google Scholar 

  25. C. Zhang, Z. Niu, Y. Ding, et al., Chem 4, 2814 (2018). https://doi.org/10.1016/j.chempr.2018.08.024

    Article  CAS  Google Scholar 

  26. A. D. Hendsbee, S. M. McAfee, J.-P. Sun, et al., J. Mater. Chem. C 3, 8904 (2015). https://doi.org/10.1039/c5tc01877c

    Article  CAS  Google Scholar 

  27. K. Wu, B. Pudasaini, J. Y. Park, et al., Organometallics 3, 679 (2020). https://doi.org/10.1021/acs.organomet.9b00822

    Article  CAS  Google Scholar 

  28. A. S. Kostyuchenko, A. Kurowska, P. Zassowski, et al., Org. Chem. 84, 10040 (2019). https://doi.org/10.1021/acs.joc.9b01216

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Infrared and NMR spectral studies were carried out using the research equipment of the Center of Molecular Structure Investigation of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, supported by the Ministry of Science and Higher Education of the Russian Federation.

Funding

This study was supported by the Russian Science Foundation (RSF no. 23-23-00192).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Kelbysheva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Supplementary Information

The supplementary information presents experimental data and characterization of the obtained compounds by NMR (Fig. S1–S11), IR (Fig. S12–S16), and CV (Fig. S17–S18) and the results of DFT calculations (Fig. S19–S33, Table S1).

11502_2023_3114_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelbysheva, E.S., Strelkova, T.V., Ezernitskaya, M.G. et al. Substituted Phthalimides Linked to the Cymantrenyl Moiety: Molecules with Tunable Optical and Electrochemical Properties. Russ. J. Inorg. Chem. 68, 1237–1246 (2023). https://doi.org/10.1134/S0036023623601435

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623601435

Key words:

Navigation