Log in

Thermal Transformations of Porous Anodic Aluminum Oxide Formed in Sulfuric Acid/Oxalic Acid Mixed Electrolytes

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Aluminum anodizing in electrolytes comprising mixtures of several acids opens way to manufacture porous films of anodic aluminum oxide (AAO) with a widely tunable structure period. Study of thermal transformations in AAO films produced in mixed electrolytes is a separate task, as a complex chemical composition of the material can give rise to some specifics in subsequent annealing. Impurity oxalate and sulfate ions were detected in the AAO produced by aluminum anodizing in sulfuric acid/oxalic acid mixed electrolytes. The sulfate weight fraction appears about one order of magnitude higher than the oxalate weight fraction, and it increases as the concentration ratio of sulfuric acid to oxalic acid in the electrolyte increases. In the same way, the crystallization temperature of amorphous AAO to a mixture of low-temperature Al2O3 polymorphs increases in response to increasing concentration ratio of sulfuric acid and oxalic acid. Thus, the component ratio in the mixed electrolyte used influences the composition and thermal transformations of AAO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. T. Domagalski, E. **fre-Perez, and L. F. Marsal, Nanomaterials 11, 430 (2021). https://doi.org/10.3390/nano11020430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. D. I. Petukhov, E. A. Chernova, O. O. Kapitanova, et al., J. Membr. Sci. 577, 184 (2019). https://doi.org/10.1016/j.memsci.2019.01.041

    Article  CAS  Google Scholar 

  3. I. V. Roslyakov, D. I. Petukhov, and K. S. Napolskii, Nanotecnology 32, LT01 (2021). https://doi.org/10.1088/1361-6528/abfeea

    Article  CAS  Google Scholar 

  4. D. I. Petukhov, A. S. Kan, A. P. Chumakov, et al., J. Membr. Sci. 621, 118994 (2021). https://doi.org/10.1016/j.memsci.2020.118994

    Article  CAS  Google Scholar 

  5. R. Valeev, E. Romanov, A. Beltukov, et al., Phys. Status Solidi 9, 1462. https://doi.org/10.1002/pssc.201100677

  6. E. O. Gordeeva, I. V. Roslyakov, A. P. Leontiev, et al., Beilstein J. Nanotechnol. 12, 957 (2021). https://doi.org/10.3762/bjnano.12.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. I. I. Ryzhkov, I. A. Kharchenko, E. V. Mikhlina, et al., Int. J. Heat Mass Transfer 176, 121414 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121414

    Article  CAS  Google Scholar 

  8. Y. H. Lee, I. Chang, G. Y. Cho, et al., Int. J. Precis. Eng. Manuf.-Green Technol. 5, 441 (2018). https://doi.org/10.1007/s40684-018-0047-0

    Article  Google Scholar 

  9. I. V. Roslyakov, I. V. Kolesnik, P. V. Evdokimov, et al., Sens. Actuators, B 330, 129307 (2021). https://doi.org/10.1016/j.snb.2020.129307

    Article  CAS  Google Scholar 

  10. I. A. Kalinin, I. V. Roslyakov, D. M. Tsymbarenko, et al., Sens. Actuators, A 317, 112457 (2021). https://doi.org/10.1016/j.sna.2020.112457

    Article  CAS  Google Scholar 

  11. A. Santos, J. Mater. Chem. C 5, 5581 (2017). https://doi.org/10.1039/C6TC05555A

    Article  CAS  Google Scholar 

  12. G. Szwachta, E. Bialek, M. Wlodarski, et al., Nanotecnology 33, 455707 (2022). https://doi.org/10.1088/1361-6528/ac83ca

    Article  Google Scholar 

  13. A. I. Sadykov, S. E. Kushnir, I. V. Roslyakov, et al., Electrochem. Commun. 100, 104 (2019). https://doi.org/10.1016/j.elecom.2019.01.027

    Article  CAS  Google Scholar 

  14. I. V. Roslyakov, E. O. Gordeeva, and K. S. Napolskii, Electrochim. Acta 241, 362 (2017). https://doi.org/10.1016/j.electacta.2017.04.140

    Article  CAS  Google Scholar 

  15. E. O. Gordeeva, I. V. Roslyakov, and K. S. Napolskii, Electrochim. Acta 307, 13 (2019). https://doi.org/10.1016/j.electacta.2019.03.098

    Article  CAS  Google Scholar 

  16. D. I. Petukhov, K. S. Napolskii, M. V. Berekchiyan, et al., ACS Appl. Mater. Interfaces 5, 7819 (2013). https://doi.org/10.1021/am401585q

    Article  CAS  PubMed  Google Scholar 

  17. A. A. Noyan, A. P. Leontiev, M. V. Yakovlev, et al., Electrochim. Acta 226, 60 (2017). https://doi.org/10.1016/j.electacta.2016.12.142

    Article  CAS  Google Scholar 

  18. H. Masuda, F. Hasegwa, and S. Ono, J. Electrochem. Soc. 144, L127 (1997). https://doi.org/10.1149/1.1837634

    Article  CAS  Google Scholar 

  19. H. Masuda and K. Fukuda, Science 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466

    Article  CAS  PubMed  Google Scholar 

  20. O. Nishinaga, T. Kikuchi, S. Natsui, et al., Sci. Rep. 3, 2748 (2013). https://doi.org/10.1038/srep02748

    Article  PubMed  PubMed Central  Google Scholar 

  21. S. Akiya, T. Kikuchi, S. Natsui, et al., Electrochim. Acta 190, 471 (2016). https://doi.org/10.1016/j.electacta.2015.12.162

    Article  CAS  Google Scholar 

  22. H. Masuda, K. Yada, and A. Osaka, Jpn. J. Appl. Phys. Lett. 37, L1340 (1998). https://doi.org/10.1143/JJAP.37.L1340

    Article  Google Scholar 

  23. M. Almasi Kashi, A. Ramazani, M. Noormohammadi, et al., J. Phys. D: Appl. Phys. 40, 7032 (2007). https://doi.org/10.1088/0022-3727/40/22/025

    Article  CAS  Google Scholar 

  24. M. Almasi Kashi, A. Ramazani, Y. Mayamai, et al., Jpn. J. Appl. Phys. 49, 015202-1 (2010). https://doi.org/10.1143/JJAP.49.015202

  25. Y. F. Xu, H. Liu, X. J. Li, et al., Mater. Lett. 151, 79 (2015). https://doi.org/10.1016/j.matlet.2015.03.049

    Article  CAS  Google Scholar 

  26. P. P. Mardilovich, A. N. Govyadinoy, N. I. Mazurenko, et al., J. Membr. Sci. 98, 143 (1995). https://doi.org/10.1016/0376-7388(94)00185-2

    Article  CAS  Google Scholar 

  27. N. A. Shirin, I. V. Roslyakov, M. V. Berekchiian, et al., Russ. J. Inorg. Chem. 67, 926 (2022). https://doi.org/10.1134/S0036023622060262

    Article  CAS  Google Scholar 

  28. Y. H. Lee, H. Ren, E. A. Wu, et al., Nano Lett. 20, 2943 (2020). https://doi.org/10.1021/acs.nanolett.9b02344

    Article  CAS  PubMed  Google Scholar 

  29. R. Kousar, S. H. Kim, and J. Y. Byun, J. King Saud University, Eng. Sci. (2021). https://doi.org/10.1016/j.jksues.2021.09.003

  30. E. O. Gordeeva, I. V. Roslyakov, A. I. Sadykov, et al., Russ. J. Electrochem. 54, 990 (2018). https://doi.org/10.1134/S1023193518130165

    Article  CAS  Google Scholar 

  31. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Programs for analysis of pore ordering in anodic alumina. www.eng.fnm.msu.ru/en/software/.

  33. W. Lee and S. J. Park, Chem. Rev. 114, 7487 (2014). https://doi.org/10.1021/cr500002z

    Article  CAS  PubMed  Google Scholar 

  34. V. P. Parkhutik, J. Phys. D: Appl. Phys. 25, 1258 (1992). https://doi.org/10.1088/0022-3727/25/8/017

    Article  CAS  Google Scholar 

  35. M. Kim, H. Kim, C. Bae, et al., J. Phys. Chem. C 118, 26789 (2014). https://doi.org/10.1021/jp507576c

    Article  CAS  Google Scholar 

  36. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, New York, 1986).

    Google Scholar 

  37. I. Vrublevsky, K. Chernyakova, A. Ispas, et al., J. Lumin. 131, 938 (2011). https://doi.org/10.1016/j.jlumin.2010.12.027

    Article  CAS  Google Scholar 

  38. M. E. Mata-Zamora and J. M. Saniger, Rev. Mexican. Fis. 51, 502 (2005).

    CAS  Google Scholar 

  39. I. V. Roslyakov, I. V. Kolesnik, E. E. Levin, et al., Surf. Coat. Technol. 381, 125159 (2020). https://doi.org/10.1016/j.surfcoat.2019.125159

    Article  CAS  Google Scholar 

  40. I. V. Roslyakov, N. A. Shirin, M. V. Berekchiian, et al., Microporous Mesoporous Mater. 294, 109840 (2020). https://doi.org/10.1016/j.micromeso.2019.109840

    Article  CAS  Google Scholar 

  41. D. R. Lide, CRC Handbook of Chemistry and Physics, 84th ed. (CRC Press, 2003).

    Google Scholar 

  42. P. P. Mardilovich, A. N. Govyadinov, N. I. Mukhurov, et al., J. Membr. Sci. 98, 131 (1995). https://doi.org/10.1016/0376-7388(94)00184-Z

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I.V. Roslyakov, I.V. Kolesnik, and K.S. Napolskii appreciate the support of the “The Future of the Planet and Global Environmental Changes” Interdisciplinary Scientific and Educational School of Moscow State University. The authors are grateful to D.D. Kholmanskikh (Moscow State University) for help in preparing porous AAO films and to T.B. Shatalova (Moscow State University) for her help with the TG/DTA experiments. The instruments of the Joint Research Centre for Physical Methods of Research located in the Kurnakov Institute of General and Inorganic Chemistry RAS were used in the SEM, EDX, and XRD experiments. The TG, DTA, and Fourier-transform IR spectroscopy were implemented on the instruments purchased at the expense of the Moscow State University Development Program.

Funding

The study was supported by the Russian Foundation for Basic Research (project No. 19-33-60088).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Roslyakov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roslyakov, I.V., Kolesnik, I.V., Belokozenko, M.A. et al. Thermal Transformations of Porous Anodic Aluminum Oxide Formed in Sulfuric Acid/Oxalic Acid Mixed Electrolytes. Russ. J. Inorg. Chem. 68, 923–930 (2023). https://doi.org/10.1134/S003602362360079X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362360079X

Keywords:

Navigation