Log in

Effect of Supersonic Nitrogen Flow on Ceramic Material Ta4HfC5–SiC

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract―

The behavior of the ceramic material Ta4HfC5-30 vol % SiC has been studied under the effect of supersonic flow of dissociated nitrogen, which is necessary to assess the potential application of these materials in oxygen-free gas environments at temperatures >1800°C. It has been found that as a result of heating the surface to ~2020°C in a few minutes there is a decrease to ~1915°C followed by a slow decrease to 188°C. This is probably due to the chemical processes occurring on the surface and the formation of an extremely rough microstructure. The ablation rate has been determined; it has been shown that neither at introduction of the sample into a high enthalpy nitrogen flow nor at sharp cooling (temperature drop to ~880°C in 9–10 s) cracking of the sample or detachment of the near-surface region has been observed. X-ray powder diffraction and Raman spectroscopy data allow us to conclude the complete removal of silicon carbide from the surface layer and the transformation of complex tantalum-hafnium carbide into the nitride.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. He, L. Fang, T. Han, et al., J. Eur. Ceram. Soc. 42, 5220 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.06.039

    Article  CAS  Google Scholar 

  2. A. Calzolari, C. Oses, C. Toher, et al., Nat. Commun. 13, 5993 (2022). https://doi.org/10.1038/s41467-022-33497-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. M. M. Esmaeili, M. Mahmoodi, A. Mokhtarzade, et al., J. Mater. Eng. Perform. 31, 7719 (2022). https://doi.org/10.1007/s11665-022-06766-9

    Article  CAS  Google Scholar 

  4. J. P. Kelly, V. S. Vakharia, E. Novitskaya, et al., Adv. Eng. Mater. 24, 2200026 (2022). https://doi.org/10.1002/adem.202200026

    Article  CAS  Google Scholar 

  5. X. Geng, W. Xu, X. Huang, et al., J. Am. Ceram. Soc. 105, 4942 (2022). https://doi.org/10.1111/jace.18416

    Article  CAS  Google Scholar 

  6. A. I. Savvatimskiy, S. V. Onufriev, G. V. Valyano, et al., Ceram. Int. 48, 19655 (2022). https://doi.org/10.1016/j.ceramint.2022.03.102

    Article  CAS  Google Scholar 

  7. V. A. Shcherbakov, A. N. Gryadunov, I. E. Semenchuk, et al., Int. J. Self-Propag. High-Temp. Synth. 31, 57. https://doi.org/10.3103/S1061386222020091

  8. X. **, C. Hou, Y. Zhao, et al., Ceram. Int. 48, 35445 (2022). https://doi.org/10.1016/j.ceramint.2022.08.147

    Article  CAS  Google Scholar 

  9. P. Wang, Z. Xu, B. Qin, et al., Vacuum 205, 111464 (2022). https://doi.org/10.1016/j.vacuum.2022.111464

    Article  CAS  Google Scholar 

  10. Z. Cheng, W. Lu, L. Chen, et al., J. Eur. Ceram. Soc. 42, 5280 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.05.068

    Article  CAS  Google Scholar 

  11. S. Zhao, J. Eur. Ceram. Soc. 42, 5290 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.05.046

    Article  CAS  Google Scholar 

  12. Z. Li, L. Chen, F. Chang, et al., Ceram. Int. 48, 30826 (2022). https://doi.org/10.1016/j.ceramint.2022.07.036

    Article  CAS  Google Scholar 

  13. M. **a, N. Lu, Y. Chen, et al., Int. J. Refract. Met. Hard Mater. 107, 105859 (2022). https://doi.org/10.1016/j.ijrmhm.2022.105859

    Article  CAS  Google Scholar 

  14. H.-R. Mao, E.-T. Dong, S.-B. **, et al., J. Eur. Ceram. Soc. 42, 4053 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.03.054

    Article  CAS  Google Scholar 

  15. E. C. Schwind, M. J. Reece, E. Castle, et al., J. Am. Ceram. Soc. 105, 4426 (2022). https://doi.org/10.1111/jace.18400

    Article  CAS  Google Scholar 

  16. W. Guo, J. Hu, Y. Ye, et al., Ceram. Int. 48, 12790 (2022). https://doi.org/10.1016/j.ceramint.2022.01.149

    Article  CAS  Google Scholar 

  17. D. E. Wolfe, P. E. Albert, C. J. Ryan, et al., J. Eur. Ceram. Soc. 42, 327 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.10.014

    Article  CAS  Google Scholar 

  18. X. Zou, D. Ni, B. Chen, et al., J. Am. Ceram. Soc. 104, 6601 (2021). https://doi.org/10.1111/jace.18007

    Article  CAS  Google Scholar 

  19. Y. Zhang, S. Li, N. Li, et al., J. Alloys Compd. 884, 161040 (2021). https://doi.org/10.1016/j.jallcom.2021.161040

    Article  CAS  Google Scholar 

  20. E. P. Simonenko, N. A. Ignatov, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 56, 1681 (2011). https://doi.org/10.1134/S0036023611110258

    Article  CAS  Google Scholar 

  21. E. P. Simonenko, N. P. Simonenko, M. I. Petrichko, et al., Russ. J. Inorg. Chem. 64, 1317 (2019). https://doi.org/10.1134/S0036023619110196

    Article  CAS  Google Scholar 

  22. E. P. Simonenko, N. P. Simonenko, A. S. Lysenkov, et al., Russ. J. Inorg. Chem. 65, 446 (2020). https://doi.org/10.1134/S0036023620030146

    Article  CAS  Google Scholar 

  23. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., J. Eur. Ceram. Soc. 41, 1088 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.10.001

    Article  CAS  Google Scholar 

  24. E. P. Simonenko, N. P. Simonenko, I. A. Nagornov, et al., Russ. J. Inorg. Chem. 66, 1887 (2021). https://doi.org/10.1134/S0036023621120172

    Article  CAS  Google Scholar 

  25. C. Agte and H. Alterthum, Z. Techn. Phys 6, 182 (1930).

    Google Scholar 

  26. R. A. Andrievskii, N. S. Strel’nikova, N. I. Poltoratskii, et al., Powder Met. Ceram. 6, 65 (1967). https://doi.org/10.1007/BF00773385

    Article  Google Scholar 

  27. O. Cedillos-Barraza, D. Manara, K. Boboridis, et al., Sci. Rep. 6, 37962 (2016). https://doi.org/10.1038/srep37962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. I. Savvatimskiy, S. V. Onufriev, and S. A. Muboyadzhyan, J. Eur. Ceram. Soc. 39, 907 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.030

    Article  CAS  Google Scholar 

  29. H. O. Pierson, Handbook of Refractory Carbides and Nitrides: Properties, Characteristics, Processing and Applications (Noyes Publications, Park Ridge, 1996).

    Google Scholar 

  30. G. V. Samsonov, Refractory Compounds. Properties and Application Handbook (Metallurgizdat, Moscow, 1963) [in Russian].

    Google Scholar 

  31. N. P. Shapkin, E. K. Papynov, O. O. Shichalin, et al., Russ. J. Inorg. Chem. 66, 629 (2021). https://doi.org/10.1134/S0036023621050168

    Article  CAS  Google Scholar 

  32. J. Sun, J. Zhao, Y. Chen, et al., Composites Part B: Eng. 231, 109586 (2022). https://doi.org/10.1016/j.compositesb.2021.109586

    Article  CAS  Google Scholar 

  33. E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al., Ceram. Int. 49, 9691 (2022). https://doi.org/10.1016/j.ceramint.2022.11.140

    Article  CAS  Google Scholar 

  34. B. Zhang, J. Yin, J. Chen, et al., J. Eur. Ceram. Soc. 38, 1227 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.10.025

    Article  CAS  Google Scholar 

  35. B. Zhang, J. Yin, Y. Huang, et al., J. Eur. Ceram. Soc. 38, 5610 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.08.021

    Article  CAS  Google Scholar 

  36. H. Zhang and F. Akhtar, Ceramics 3, 359 (2020). https://doi.org/10.3390/ceramics3030032

    Article  CAS  Google Scholar 

  37. A. Vinci, L. Zoli, D. Sciti, et al., J. Eur. Ceram. Soc. 39, 780 (2019). https://doi.org/10.1016/j.jeurceramsoc.2018.11.017

    Article  CAS  Google Scholar 

  38. C. Zhang, Y. Zhang, K. Cao, et al., Ceram. Int. 47, 6463 (2021). https://doi.org/10.1016/j.ceramint.2019.09.229

    Article  CAS  Google Scholar 

  39. D. Rana and K. Balani, Int. J. Refract. Met. Hard Mater. 110, 106024 (2023). https://doi.org/10.1016/j.ijrmhm.2022.106024

    Article  CAS  Google Scholar 

  40. J. Xu, F. Zhao, S. He, et al., J. Am. Ceram. Soc. 105, 3838 (2022). https://doi.org/10.1111/jace.18380

    Article  CAS  Google Scholar 

  41. S. K. Sharma, K. Chaudhary, Y. Gupta, et al., Int. J. Appl. Ceram. Technol. 19, 1691 (2022). https://doi.org/10.1111/ijac.13993

    Article  CAS  Google Scholar 

  42. C. Liu, A. Wang, T. Tian, et al., J. Eur. Ceram. Soc. 41, 7469 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.07.047

    Article  CAS  Google Scholar 

  43. A. N. Gordeev, A. F. Kolesnikov, and V. I. Sakharov, Fluid Dyn. 52, 786 (2017). https://doi.org/10.1134/S0015462817060076

    Article  CAS  Google Scholar 

  44. V. Carandente, R. Savino, A. Esposito, et al., Exp. Therm. Fluid Sci. 48, 97 (2013). https://doi.org/10.1016/j.expthermflusci.2013.02.012

    Article  CAS  Google Scholar 

  45. A. F. Kolesnikov, I. V. Lukomskii, V. I. Sakharov, et al., Fluid Dyn. 56, 897 (2021). https://doi.org/10.1134/S0015462821060070

    Article  Google Scholar 

  46. A. F. Kolesnikov, N. T. Kuznetsov, T. I. Murav’eva, et al., Fluid Dyn. 57, 513 (2022). https://doi.org/10.1134/S0015462822040061

    Article  CAS  Google Scholar 

  47. I. V. Lukomskii, A. V. Chaplygin, and A. F. Kolesnikov, Patent RU 205572, 2021.

  48. E. P. Simonenko, N. P. Simonenko, A. F. Kolesnikov, et al., Materials (Basel) 15, 8507 (2022). https://doi.org/10.3390/ma15238507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. L. Feng, J.-M. Kim, S.-H. Lee, et al., J. Am. Ceram. Soc. 99, 1129 (2016). https://doi.org/10.1111/jace.14144

    Article  CAS  Google Scholar 

  50. J. Jiang, S. Wang, and W. Li, J. Am. Ceram. Soc. 99, 3198 (2016). https://doi.org/10.1111/jace.14436

    Article  CAS  Google Scholar 

  51. C. L. Burdick and E. A. Owen, J. Am. Chem. Soc. 40, 1749 (1918). https://doi.org/10.1021/ja02245a001

    Article  CAS  Google Scholar 

  52. R. W. G. Wyckoff, Cryst. Struct. 1, 85 (1963).

    Google Scholar 

  53. E. Rudy, Metall. Mater. Trans. B 1, 1249 (1970). https://doi.org/10.1007/BF02900238

    Article  CAS  Google Scholar 

  54. A. Zerr, G. Miehe, and R. Riedel, Nat. Mater. 2, 185 (2003). https://doi.org/10.1038/nmat836

    Article  CAS  PubMed  Google Scholar 

  55. J. Gatterer, G. Dufek, P. Ettmayer, et al., Monatsh. Chem.—Chem. Mon. 106, 1137 (1975). https://doi.org/10.1007/BF00906226

    Article  CAS  Google Scholar 

  56. L. A. Aleshina and S. V. Loginova, Crystallogr. Rep. 47, 415 (2002). https://doi.org/10.1134/1.1481927

    Article  CAS  Google Scholar 

  57. K. R. Whittle, G. R. Lumpkin, and S. E. Ashbrook, J. Solid State Chem. 179, 512 (2006). https://doi.org/10.1016/j.jssc.2005.11.011

    Article  CAS  Google Scholar 

  58. O. Ohtaka, T. Yamanaka, and S. Kume, J. Ceram. Soc. Jpn. 99 (1153), 826 (1991). https://doi.org/10.2109/jcersj.99.826

    Article  CAS  Google Scholar 

  59. H. Wipf, M. V. Klein, and W. S. Williams, Phys. Stat. Solidi 108, 489 (1981). https://doi.org/10.1002/pssb.2221080225

    Article  CAS  Google Scholar 

  60. I. Tallo, T. Thomberg, H. Kurig, et al., Carbon 67, 607 (2014). https://doi.org/10.1016/j.carbon.2013.10.034

    Article  CAS  Google Scholar 

  61. M. Stoehr, C.-S. Shin, I. Petrov, et al., J. Appl. Phys. 101, 123509 (2007). https://doi.org/10.1063/1.2748354

    Article  CAS  Google Scholar 

  62. K. Valleti, J. Vac. Sci. Technol., A: Vacuum. Surfaces. Film 27, 626 (2009). https://doi.org/10.1116/1.3136858

    Article  CAS  Google Scholar 

  63. R. Wu, B. Zhou, Q. Li, et al., J. Phys. D: Appl. Phys. 45, 125304 (2012). https://doi.org/10.1088/0022-3727/45/12/125304

    Article  CAS  Google Scholar 

  64. R. S. Devan, W.-D. Ho, S. Y. Wu, et al., J. Appl. Crystallogr. 43, 498 (2010). https://doi.org/10.1107/S002188981000796X

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (grant no. 20-03-00502). The experiment at the VGU-4 HF plasma torch was partly supported by the State Assignment of the Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences (grant no. AAAA-A20-120011690135-5, modification of plasmatron measuring systems). The study of the microstructure and phase composition of the samples was carried out using the equipment of the Center for Collective Use of the Physical Methods of Investigation of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, which operates with the support of the State Assignment of the Kurnakov Institute RAS in the field of fundamental scientific research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Kolesnikov, A.F. et al. Effect of Supersonic Nitrogen Flow on Ceramic Material Ta4HfC5–SiC. Russ. J. Inorg. Chem. 68, 479–486 (2023). https://doi.org/10.1134/S0036023623600272

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623600272

Keywords:

Navigation