Log in

Synthesis and Characterization of Z-Scheme Ag/AgI/Bi2WO6 Photocatalyst for Enhanced Rhodamine B Degradation under Visible Light

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Z-scheme Ag/AgI/Bi2WO6 nanocomposites as visible-light-driven photocatalysts have been successfully prepared by precipitation–sonochemical deposition method. Structure, morphology, composition and optical property of as-prepared Z-scheme Ag/AgI/Bi2WO6 nanocomposites have been characterized by X-ray powder diffraction, Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), UV-visible diffuse reflectance spectroscopy (DRS) and photoluminescence (PL) spectroscopy. The Z-scheme Ag/AgI/Bi2WO6 photocatalysts have been composed of a major phase of orthorhombic Bi2WO6 and two minor phases of face centered cubic AgI and face centered cubic metallic Ag. These nanocomposites show fully AgI and Ag/AgI nanoparticles supported on top of Bi2WO6 nanoplates. The Z-scheme Ag/AgI/Bi2WO6 photocatalysts have photocatalytic activity for the degradation of rhodamine B (RhB) higher than pure Bi2WO6 sample and AgI/Bi2WO6 nanocomposites under visible radiation because of the synergistic effect of heterojunctions containing in the Ag/AgI/Bi2WO6 nanocomposites and surface plasmon resonance effect of Ag nanoparticles. The trap** experiment proved that h+ and \(^{\bullet }{\text{O}}_{2}^{ - }\) have the major roles in degrading RhB over Ag/AgI/Bi2WO6 nanocomposites induced by visible radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.

REFERENCES

  1. Q. Zhang, Q. Yang, S. Xu, et al., Micro Nano Lett. 15, 1055 (2020). https://doi.org/10.1049/mnl.2020.0212

    Article  CAS  Google Scholar 

  2. Z. Zhu, Y. Yan, and J. Li, Micro Nano Lett. 10, 460 (2015). https://doi.org/10.1049/mnl.2015.0147

    Article  CAS  Google Scholar 

  3. Z. Luo, J. Li, G. Sui, et al., Korean J. Chem. Eng. 39, 2127 (2022). https://doi.org/10.1007/s11814-022-1070-y

    Article  CAS  Google Scholar 

  4. G. Yu, Y. Zhao, Y. Zhang, et al., Catal. Lett. 152, 1145 (2022). https://doi.org/10.1007/s10562-021-03712-7

    Article  CAS  Google Scholar 

  5. C. Byrne, S. Dervin, D. Hermosilla, et al., 380, 199 (2021). https://doi.org/10.1016/j.cattod.2021.02.001

  6. S. Khan, M. Sadiq, and N. Muhammad, Environ. Sci. Pollut. Res. 29, 54745 (2022). https://doi.org/10.1007/s11356-022-19807-6

    Article  CAS  Google Scholar 

  7. K. Santhi, S. Ponnusamy, and S. Harish, M. Navaneethan, J. Mater. Sci.: Mater. Electron. 33, 9798 (2022). https://doi.org/10.1007/s10854-022-07945-z

  8. F. Qiu, S. Pan, X. Zhu, and T. Zhang, J. Inorg. Organomet. Polym. Mater. 32, 1033 (2022). https://doi.org/10.1007/s10904-021-02177-w

    Article  CAS  Google Scholar 

  9. A. Phuruangrat, T. Sakhon, B. Kuntalue, S. Thongtem, and T. Thongtem, Russ. J. Inorg. Chem. 66, 1829 (2021). https://doi.org/10.1134/S0036023621120135

    Article  Google Scholar 

  10. X. Yu, Z. Wang, E. Li, et al., Catal. Lett. 152, 1244 (2022). https://doi.org/10.1007/s10562-021-03713-6

    Article  CAS  Google Scholar 

  11. A. Phuruangrat, S. Buapoon, T. Bunluesak, et al., J. Aust. Ceram. Soc. 58, 71 (2022). https://doi.org/10.1007/s41779-021-00665-3

    Article  CAS  Google Scholar 

  12. H. N. Abid, A. Al‑keisy, D. S. Ahmed, et al., Environ. Sci. Pollut. Res. 29, 37633 (2022). https://doi.org/10.1007/s11356-021-18064-3

    Article  CAS  Google Scholar 

  13. W. Xue, Z. Peng, D. Huang, et al., Ceram. Inter. 45, 6340 (2019). https://doi.org/10.1016/j.ceramint.2018.12.119

    Article  CAS  Google Scholar 

  14. A. Phuruangrat, P. Keereesaensuk, K. Karthik, et al., J. Inorg. Organomet. Polym. Mater. 30, 322 (2020). https://doi.org/10.1007/s10904-019-01190-4

    Article  CAS  Google Scholar 

  15. E. Jiang, X. Liu, H. Che, et al., RSC Adv. 8, 37200 (2018). https://doi.org/10.1039/c8ra07482h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. H. An, Y. Du, T. Wang, et al., Rare Met. 27, 243 (2008). https://doi.org/10.1016/S1001-0521(08)60123-0

    Article  CAS  Google Scholar 

  17. L. Ye, Y. Su, X. **, et al., Environ. Sci.: Nano 1, 90 (2014). https://doi.org/10.1039/c3en00098b

    Article  CAS  Google Scholar 

  18. A. Phuruangrat, S. Jonjana, S. Thongtem, and T. Thongtem, J. Aust. Ceram. Soc. 55, 57 (2019). https://doi.org/10.1007/s41779-018-0210-7

    Article  CAS  Google Scholar 

  19. M. Guo, Z. Zhou, S. Yan, et al., Sci. Rep. 10, 18401 (2020). https://doi.org/10.1038/s41598-020-75003-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Y. Wu, X. Zhang, G. Zhang, and W. Guan, Micro Nano Lett. 9, 119 (2014). https://doi.org/10.1049/mnl.2013.0705

    Article  CAS  Google Scholar 

  21. Z. Song, P. Lin, Z. Ma, et al., J. Exper. Nanosci. 14, 56 (2019). https://doi.org/10.1080/17458080.2019.1638507

    Article  CAS  Google Scholar 

  22. M. Matalkeh, G. K. Nasrallah, F. M. Shurrab, et al., Results Eng. 13, 100313 (2022). https://doi.org/10.1016/j.rineng.2021.100313

    Article  CAS  Google Scholar 

  23. B. M. Rajbongshi, A. Ramchiary, B. M. Jha, and S. K. Samdarshi, J. Mater. Sci. 25, 2969 (2014). https://doi.org/10.1007/s10854-014-1968-1

    Article  CAS  Google Scholar 

  24. P. Zhang, B. Liu, Y. Li, et al., Russ. J. Inorg. Chem. 66, 2036 (2021). https://doi.org/10.1134/S0036023621140096

    Article  CAS  Google Scholar 

  25. Y. Tang, Z. Jiang, J. Deng, et al., ACS Appl. Mater. Interfaces 4, 438 (2012). https://doi.org/10.1021/am2015102

    Article  CAS  PubMed  Google Scholar 

  26. X. Wan, T. Wang, Y. Dong, and D. He, J. Nanomater. 2014, 908785 (2014). https://doi.org/10.1155/2014/908785

    Article  CAS  Google Scholar 

  27. Q. Zhang, J. Bai, G. Li, and C. Li, J. Solid State Chem. 270, 129 (2019). https://doi.org/10.1016/j.jssc.2018.11.015

    Article  CAS  Google Scholar 

  28. M. T. Khonkeldieva, S. A. Talipov, B. T. Ibragimov, et al., Uzbekiston Fiz. Zh. 17, 261 (2015).

    Google Scholar 

  29. Powder Diffraction File, JCPDS-ICDD (12 Campus Blvd., Newtown Square, PA 19073-3273, U.S.A., 2001).

  30. Y. M. Yukhin, A. I. Titkov, G. K. Kulmukhamedov, and N. Z. Lyakhov, Theor. Found. Chem. Eng. 59, 490 (2015). https://doi.org/10.1134/S004057951504020X

    Article  CAS  Google Scholar 

  31. C. Chen, Y. Tang, B. Vlahovic, and F. Yan, Nanoscale Res. Lett. 12, 451 (2017). https://doi.org/10.1186/s11671-017-2216-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. A. I. Titkov, T. A. Borisenko, and O. A. Logutenko, Chem. Sustain. Develop. 28, 64 (2020). https://doi.org/10.15372/CSD2020204

    Article  Google Scholar 

  33. L. Kong, J. Yang, X. Hao, et al., J. Mater. Chem. 20, 7372 (2010). https://doi.org/10.1039/C0JM00004C

    Article  CAS  Google Scholar 

  34. X. J. Zhang, Ferroelectrics 514, 34 (2017). https://doi.org/10.1080/00150193.2017.1359042

    Article  CAS  Google Scholar 

  35. X. Liu, S. Z. Wang, S. Wang, et al., R. Soc. Open Sci. 6, 181422 (2019). https://doi.org/10.1098/rsos.181422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. G. Zhang, Z. Hu, M. Sun, et al., Adv. Funct. Mater. 25, 3726 (2015). https://doi.org/10.1002/adfm.201501009

    Article  CAS  Google Scholar 

  37. H. Li, J. Zhang, J. Yu, and S. Cao, Trans. Tian** Univ. 27, 338 (2021). https://doi.org/10.1007/s12209-021-00289-5

    Article  CAS  Google Scholar 

  38. H. Li, J. Liu, W. Hou, et al., Appl. Catal. B 160–161, 89 (2014). https://doi.org/10.1016/j.apcatb.2014.05.019

    Article  CAS  Google Scholar 

  39. A. T. T. Do, H. T. Giang, T. T. Do, et al., Beilstein J. Nanotechnol. 5, 1261 (2014). https://doi.org/10.3762/bjnano.5.140

  40. Z. Xu, N. Liu, Y Han, et al., Desalin. Water Treat. 216, 162 (2021). https://doi.org/10.5004/dwt.2021.26823

    Article  CAS  Google Scholar 

  41. Y. Shimodaira, H. Kato, H. Kobayashi, and A. Kudo, J. Phys. Chem. B 110, 17790 (2006). https://doi.org/10.1021/jp0622482

    Article  CAS  PubMed  Google Scholar 

  42. K. Lai, W. Wei, Y. Dai, et al., Rare Metals 30, 166 (2011). https://doi.org/10.1007/s12598-011-0262-0

    Article  CAS  Google Scholar 

  43. S. Jonjana, A. Phuruangrat, S. Thongtem, and T. Thongtem, Mater. Lett. 175, 75 (2016). https://doi.org/10.1016/j.matlet.2016.03.125

    Article  CAS  Google Scholar 

  44. X. Chen, Z. Xue, Y. Yao, et al., Int. J. Photoenergy 2012, 754691 (2012). https://doi.org/10.1155/2012/754691

    Article  CAS  Google Scholar 

  45. K. Yang, H. Lin, S. Liang, et al., RSC Adv. 8, 13933 (2018). https://doi.org/10.1039/C8RA00603B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. W. Zhou, H. Zhao, J. Gao, et al., RSC Adv. 6, 108791 (2016). https://doi.org/10.1039/c6ra20242

    Article  CAS  Google Scholar 

  47. X. Xu, L. **ao, Y. Jia, et al., J. Electron. Mater. 47, 536 (2018). https://doi.org/10.1007/s11664-017-5810-4

    Article  CAS  Google Scholar 

  48. S. Jonjana, A. Phuruangrat, N. Ekthammathat, et al., J. Electron. Mater. 48, 4789 (2019). https://doi.org/10.1007/s11664-019-07271-x

    Article  CAS  Google Scholar 

  49. P. Intaphong, A. Phuruangrat, K. Karthik, et al., J. Inorg. Organomet. Polym. Mater. 30, 714 (2020). https://doi.org/10.1007/s10904-019-01259-0

    Article  CAS  Google Scholar 

  50. K. Yang, H. Lin, S. Liang, et al., RSC Adv. 8, 13933 (2018). https://doi.org/10.1039/c8ra00603b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Z. Gou, J. Dai, and J. Bai, Int. J. Electrochem. Sci. 15, 10684 (2020). https://doi.org/10.20964/2020.11.68

    Article  CAS  Google Scholar 

  52. L. Song, T. Li, and S. Zhang, Appl. Organometal. Chem. 32, e4209 (2018). https://doi.org/10.1002/aoc.4209

    Article  CAS  Google Scholar 

  53. Y. Wang, C.G. Niu, L. Zhang, et al., RSC Adv. 6, 10221 (2016). https://doi.org/10.1039/c5ra23736j

    Article  CAS  Google Scholar 

  54. X. Yuan, Z. Wu, G. Zeng, et al., Appl. Surf. Sci. 454, 293 (2018). https://doi.org/10.1016/j.apsusc.2018.05.163

    Article  CAS  Google Scholar 

  55. M. S. Gui, P. F. Wang, M. M. Tang, and D. Yuan, Adv. Mater. Res. 807–809, 1534 (2013). https://www.scientific.net/AMR.807-809.1534

Download references

ACKNOWLEDGMENTS

This research was supported by National Science, Research and Innovation Fund (NSRF), Thailand and Prince of Songkla University (grant no. TAE6505097M).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anukorn Phuruangrat or Somchai Thongtem.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anukorn Phuruangrat, Suriyarpitak, K., Wannapop, S. et al. Synthesis and Characterization of Z-Scheme Ag/AgI/Bi2WO6 Photocatalyst for Enhanced Rhodamine B Degradation under Visible Light. Russ. J. Inorg. Chem. 67 (Suppl 2), S128–S140 (2022). https://doi.org/10.1134/S0036023622602227

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622602227

Keywords:

Navigation