Log in

Effect of 2 vol % Graphene Additive on Heat Transfer of Ceramic Material in Underexpanded Jets of Dissociated Air

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Using a high-frequency induction plasma torch, features of the behavior of ultra-high-temperature ceramic materials HfB2–30 vol % SiC and (HfB2–30 vol % SiC)–2 vol % CG under the influence of underexpanded jets of dissociated air have been studied. The heat fluxes measured at the final stage of the experiment have been found to be equal to 120 and 111 W cm–2, respectively. It has been found that for graphene-modified ceramics, the surface temperature is slightly lower (by 35–75°C) compared to base UHTCs; however, the microstructure, elemental and phase composition of the oxidized surface differed greatly: for (HfB2–30 vol % SiC)–2 vol % CG, in addition to a decrease in the number of spherical convex particles formed at the exit of the borosilicate melt on the surface, the formation of openwork layered formations, presumably, boric acid, has been noted. For the estimated integral radiation coefficients, a tendency to decrease in the course of thermochemical exposure has been noted. It has been established that under the conditions of a supersonic air plasma jet flow, the studied materials manifest themselves as low-catalytic ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 58, 1269 (2013). https://doi.org/10.1134/S003602361311017X

    Article  CAS  Google Scholar 

  2. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1298 (2014). https://doi.org/10.1134/S0036023614110217

    Article  CAS  Google Scholar 

  3. V. G. Sevastyanov, E. P. Simonenko, A. N. Gordeev, et al., Russ. J. Inorg. Chem. 59, 1361 (2014). https://doi.org/10.1134/S0036023614120250

    Article  CAS  Google Scholar 

  4. S. Dubey, A. Ariharan, A. Nisar, et al., Scr. Mater. 218, 114776 (2022). https://doi.org/10.1016/j.scriptamat.2022.114776

    Article  CAS  Google Scholar 

  5. C. Liégaut, P. Bertrand, L. Maille, et al., J. Eur. Ceram. Soc. 42, 3168 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.02.029

    Article  CAS  Google Scholar 

  6. C. Pellegrini, M. Balat-Pichelin, O. Rapaud, et al., Ceram. Int. 48, 2177 (2022). https://doi.org/10.1016/j.ceramint.2021.09.310

    Article  CAS  Google Scholar 

  7. E. P. Simonenko, N. P. Simonenko, E. K. Papynov, et al., Russ. J. Inorg. Chem. 63, 1 (2018). https://doi.org/10.1134/S0036023618010187

    Article  CAS  Google Scholar 

  8. E. P. Simonenko, N. P. Simonenko, A. N. Gordeev, et al., J. Sol-Gel Sci. Technol. 92, 386 (2019). https://doi.org/10.1007/s10971-019-05029-9

    Article  CAS  Google Scholar 

  9. J. Han, P. Hu, X. Zhang, et al., Compos. Sci. Technol. 68, 799 (2008). https://doi.org/10.1016/j.compscitech.2007.08.017

    Article  CAS  Google Scholar 

  10. A. Y. Potanin, A. N. Astapov, Y. S. Pogozhev, et al., J. Eur. Ceram. Soc. 41, 34 (2021). https://doi.org/10.1016/j.jeurceramsoc.2021.09.018

    Article  CAS  Google Scholar 

  11. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Ultrahigh-Temperature Ceramic Materials: Modern Problems and Trends (IP A. V. Konyakhin, Moscow (Book Jet), 2020) [in Russian].

  12. A. Nisar, R. Hassan, A. Agarwal, et al., Ceram. Int. 48, 8852 (2022). https://doi.org/10.1016/j.ceramint.2021.12.199

    Article  CAS  Google Scholar 

  13. T. G. Aguirre, B. W. Lamm, C. L. Cramer, et al., Ceram. Int. 48, 7344 (2022). https://doi.org/10.1016/j.ceramint.2021.11.314

    Article  CAS  Google Scholar 

  14. T. H. Squire and J. Marschall, J. Eur. Ceram. Soc. 30, 2239 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.01.026

    Article  CAS  Google Scholar 

  15. W. G. Fahrenholtz and G. E. Hilmas, Int. Mater. Rev. 57, 61 (2012). https://doi.org/10.1179/1743280411Y.0000000012

    Article  CAS  Google Scholar 

  16. R. Savino, L. Criscuolo, G. D. Di Martino, et al., J. Eur. Ceram. Soc. 38, 2937 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.12.043

    Article  CAS  Google Scholar 

  17. T. A. Parthasarathy, M. D. Petry, M. K. Cinibulk, et al., J. Am. Ceram. Soc. 96, 907 (2013). https://doi.org/10.1111/jace.12180

    Article  CAS  Google Scholar 

  18. A. Paul, D. D. Jayaseelan, S. Venugopal, et al., Am. Ceram. Soc. Bull. 91, 22 (2012).

    CAS  Google Scholar 

  19. J. F. Justin and A. Jankowiak, J. AerospaceLab 3, AL03 (2011).

    Google Scholar 

  20. T. A. Parthasarathy, R. A. Rapp, M. Opeka, et al., J. Am. Ceram. Soc. 95, 338 (2012). https://doi.org/10.1111/j.1551-2916.2011.04927.x

    Article  CAS  Google Scholar 

  21. M. M. Opeka, I. G. Talmy, and J. A. Zaykoski, J. Mater. Sci. 39, 5887 (2004). https://doi.org/10.1023/B:JMSC.0000041686.21788.77

    Article  CAS  Google Scholar 

  22. E. Eakins, D. D. Jayaseelan, and W. E. Lee, Metall. Mater. Trans. A 42, 878 (2011). https://doi.org/10.1007/s11661-010-0540-8

    Article  CAS  Google Scholar 

  23. Y. S. Pogozhev, A. Y. Potanin, S. I. Rupasov, et al., Russ. J. Non-Ferrous Met. 61, 704 (2020). https://doi.org/10.3103/S1067821220060164

    Article  Google Scholar 

  24. J.-F. Justin, A. Julian-Jankowiak, V. Guérineau, et al., CEAS Aeronaut. J. 11, 651 (2020). https://doi.org/10.1007/s13272-020-00445-y

    Article  Google Scholar 

  25. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 64, 1697 (2019). https://doi.org/10.1134/S0036023619140079

    Article  CAS  Google Scholar 

  26. J. D. Jarman, W. G. Fahrenholtz, G. E. Hilmas, et al., J. Eur. Ceram. Soc. 42, 2107 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.01.019

    Article  CAS  Google Scholar 

  27. C. Liu, X. Yuan, W. Wang, et al., Ceram. Int. 48, 4055 (2022). https://doi.org/10.1016/j.ceramint.2021.10.195

    Article  CAS  Google Scholar 

  28. L. Silvestroni, N. Gilli, A. Migliori, et al., Compos Part B. https://doi.org/10.1016/j.compositesb.2019.107618

  29. M. Ghassemi Kakroudi, M. Dehghanzadeh Alvari, M. Shahedi Asl, et al., Ceram. Int. 46, 3725 (2020). https://doi.org/10.1016/j.ceramint.2019.10.093

    Article  CAS  Google Scholar 

  30. L. Silvestroni, S. Mungiguerra, D. Sciti, et al., Corros. Sci. 159, 108125 (2019). https://doi.org/10.1016/j.corsci.2019.108125

    Article  CAS  Google Scholar 

  31. H.-B. Ma, J. Zou, J.-T. Zhu, et al., Scr. Mater. 157, 76 (2018). https://doi.org/10.1016/j.scriptamat.2018.07.038

    Article  CAS  Google Scholar 

  32. J. Zou, V. Rubio, and J. Binner, Acta Mater. 133, 293 (2017). https://doi.org/10.1016/j.actamat.2017.05.033

    Article  CAS  Google Scholar 

  33. H.-B. Ma, J. Zou, J.-T. Zhu, et al., Acta Mater. 129, 159 (2017). https://doi.org/10.1016/j.actamat.2017.02.052

    Article  CAS  Google Scholar 

  34. F. Monteverde and L. Silvestroni, Mater. Des. 109, 396 (2016). https://doi.org/10.1016/j.matdes.2016.06.114

    Article  CAS  Google Scholar 

  35. Z. Liu, H. Bu, W. Zhang, et al., Ceram. Int. 48, 21162 (2022). https://doi.org/10.1016/j.ceramint.2022.04.009

    Article  CAS  Google Scholar 

  36. B. Mohammadzadeh, S. Jung, T. H. Lee, et al., Ceram. Int. 47, 11438 (2021). https://doi.org/10.1016/j.ceramint.2020.12.271

    Article  CAS  Google Scholar 

  37. C. Wei, Z. Zhang, X. Ma, et al., Corros. Sci. 197, 110051 (2022). https://doi.org/10.1016/j.corsci.2021.110051

    Article  CAS  Google Scholar 

  38. J. Zhang, H. Chen, G. **ao, et al., Ceram. Int. 48, 8097 (2022). https://doi.org/10.1016/j.ceramint.2021.12.011

    Article  CAS  Google Scholar 

  39. B. R. Golla and S. K. Thimmappa, J. Alloys Compd. 797, 92 (2019). https://doi.org/10.1016/j.jallcom.2019.05.097

    Article  CAS  Google Scholar 

  40. Z. Ahmadi, B. Nayebi, M. Shahedi Asl, et al., Ceram. Int. 43, 9699 (2017). https://doi.org/10.1016/j.ceramint.2017.04.144

    Article  CAS  Google Scholar 

  41. C. **a, S. A. Delbari, Z. Ahmadi, et al., Ceram. Int. 46, 29334 (2020). https://doi.org/10.1016/j.ceramint.2020.08.054

    Article  CAS  Google Scholar 

  42. V.-H. Nguyen, DelbariS. Ali, Z. Ahmadi, et al., Results Phys. 19, 103348 (2020). https://doi.org/10.1016/j.rinp.2020.103348

    Article  Google Scholar 

  43. Z. Zhang, C. Wei, R. Liu, et al., Ceram. Int. 47, 11973 (2021). https://doi.org/10.1016/j.ceramint.2021.01.039

    Article  CAS  Google Scholar 

  44. N. Pourmohammadie Vafa, M. Ghassemi Kakroudi, and M. Shahedi Asl, Ceram. Int. 46, 21533 (2020). https://doi.org/10.1016/j.ceramint.2020.05.255

    Article  CAS  Google Scholar 

  45. Y. Yang, Y. Qian, J. Xu, et al., Ceram. Int. 44, 16150 (2018). https://doi.org/10.1016/j.ceramint.2018.05.075

    Article  CAS  Google Scholar 

  46. M. Zamharir, M. Zakeri, M. Razavi, et al., Int. J. Refract. Met. Hard Mater. 103, 105775 (2022). https://doi.org/10.1016/j.ijrmhm.2021.105775

    Article  CAS  Google Scholar 

  47. M. Zhu, L. Zhang, N. Li, et al., Ceram. Int. 48, 27401 (2022). https://doi.org/10.1016/j.ceramint.2022.05.378

    Article  CAS  Google Scholar 

  48. K. Gui, F. Liu, G. Wang, et al., J. Adv. Ceram 7, 343 (2018). https://doi.org/10.1007/s40145-018-0284-2

    Article  CAS  Google Scholar 

  49. Y. Bai, Y. Ma, M. Sun, et al., J. Eur. Ceram. Soc. 39, 3938 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.06.005

    Article  CAS  Google Scholar 

  50. N. K. Gopinath, G. Jagadeesh, and B. Basu, J. Am. Ceram. Soc. 102, 6925 (2019). https://doi.org/10.1111/jace.16548

    Article  CAS  Google Scholar 

  51. A. Purwar, V. Thiruvenkatam, and B. Basu, J. Am. Ceram. Soc. 100, 4860 (2017). https://doi.org/10.1111/jace.15001

    Article  CAS  Google Scholar 

  52. Y. Bai, B. Zhang, H. Du, et al., J. Am. Ceram. Soc. 104, 1841 (2021). https://doi.org/10.1111/jace.17610

    Article  CAS  Google Scholar 

  53. N. Li, P. Hu, P. F. **ng, et al., IOP Conf. Ser. Mater. Sci. Eng. 479, 012067 (2019). https://doi.org/10.1088/1757-899X/479/1/012067

  54. D. A. Bannykh, V. V. Lozanov, and N. I. Baklanova, Inorg. Mater. 57, 343 (2021). https://doi.org/10.1134/S0020168521040026

    Article  CAS  Google Scholar 

  55. D. Bannykh, A. Utkin, and N. Baklanova, Int. J. Refract. Met. Hard Mater. 84, 105023 (2019). https://doi.org/10.1016/j.ijrmhm.2019.105023

    Article  CAS  Google Scholar 

  56. E. P. Simonenko, N. P. Simonenko, V. G. Sevastyanov, et al., Russ. J. Inorg. Chem. 63, 1772 (2018). https://doi.org/10.1134/S003602361814005X

    Article  CAS  Google Scholar 

  57. Y. Liu, Y. Cheng, D. Ma, et al., J. Eur. Ceram. Soc. 42, 3699 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.03.045

    Article  CAS  Google Scholar 

  58. M. Shahedi Asl, A. Sabahi Namini, S. A. Delbari, et al., Mater. Chem. Phys. 275, 125322 (2022). https://doi.org/10.1016/j.matchemphys.2021.125322

  59. D. Zhang, H. Yu, A. Wang, et al., Corros. Sci. 190, 109706 (2021). https://doi.org/10.1016/j.corsci.2021.109706

    Article  CAS  Google Scholar 

  60. O. Popov, J. Vleugels, E. Zeynalov, et al., J. Eur. Ceram. Soc. 40, 5012 (2020). https://doi.org/10.1016/j.jeurceramsoc.2020.07.039

    Article  CAS  Google Scholar 

  61. A. Nisar, S. Bajpai, M. M. Khan, et al., Ceram. Int. 46, 21689 (2020). https://doi.org/10.1016/j.ceramint.2020.05.276

    Article  CAS  Google Scholar 

  62. J. Cao, M. Wang, L. Wang, et al., Int. J. Appl. Ceram. Technol. 19, 2285 (2022). https://doi.org/10.1111/ijac.14014

    Article  CAS  Google Scholar 

  63. V.-H. Nguyen, S. A. Delbari, M. Shahedi Asl, et al., Ceram. Int. 47, 12459 (2021). https://doi.org/10.1016/j.ceramint.2021.01.103

    Article  CAS  Google Scholar 

  64. V.-H. Nguyen, S. A. Delbari, M. Shahedi Asl, et al., Int. J. Refract. Met. Hard Mater. 95, 105457 (2021). https://doi.org/10.1016/j.ijrmhm.2020.105457

    Article  CAS  Google Scholar 

  65. F. Monteverde, R. Savino, M. D. S. Fumo, et al., J. Eur. Ceram. Soc. 30, 2313 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.01.029

    Article  CAS  Google Scholar 

  66. A. I. Fisenko and V. Lemberg, Int. J. Thermophys. 34, 486 (2013). https://doi.org/10.1007/s10765-013-1429-8

    Article  CAS  Google Scholar 

  67. F. Wang, L. Cheng, Y. **e, et al., J. Alloys Compd. 625, 1 (2015). https://doi.org/10.1016/j.jallcom.2014.09.191

    Article  CAS  Google Scholar 

  68. N. Li, P. **ng, C. Li, et al., Appl. Surf. Sci. 409, 1 (2017). https://doi.org/10.1016/j.apsusc.2017.02.266

    Article  CAS  Google Scholar 

  69. L. Liu, L. Yang, H. Ma, et al., J. Asian Ceram. Soc. 9, 1506 (2021). https://doi.org/10.1080/21870764.2021.1999559

    Article  Google Scholar 

  70. S. Meng, H. Chen, J. Hu, et al., Mater. Des 32, 377 (2011). https://doi.org/10.1016/j.matdes.2010.06.007

    Article  CAS  Google Scholar 

  71. L. Scatteia, R. Borrelli, G. Cosentino, et al., J. Spacecr. Rockets 43, 1004 (2006). https://doi.org/10.2514/1.21156

    Article  CAS  Google Scholar 

  72. L. Scatteia, D. Alfano, F. Monteverde, et al., J. Am. Ceram. Soc. 91, 1461 (2008). https://doi.org/10.1111/j.1551-2916.2008.02325.x

    Article  CAS  Google Scholar 

  73. M. Balat-Pichelin, E. Beche, D. Sciti, et al., Ceram. Int. 40, 9731 (2014). https://doi.org/10.1016/j.ceramint.2014.02.059

    Article  CAS  Google Scholar 

  74. S. Mungiguerra, G. D. Di Martino, A. Cecere, et al., Int. J. Heat Mass Transfer 156, 119910 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119910

    Article  CAS  Google Scholar 

  75. Y. Zhang and S. Sanvito, Appl. Surf. Sci. 566, 150622 (2021). https://doi.org/10.1016/j.apsusc.2021.150622

    Article  CAS  Google Scholar 

  76. J. Marschall, A. Chamberlain, D. Crunkleton, et al., J. Spacecr. Rockets 41, 576 (2004). https://doi.org/10.2514/1.2879

    Article  CAS  Google Scholar 

  77. A. F. Kolesnikov, I. V. Lukomskii, V. I. Sakharov, et al., Fluid Dyn. 56, 897 (2021). https://doi.org/10.1134/S0015462821060070

    Article  Google Scholar 

  78. A. F. Kolesnikov, N. T. Kuznetsov, T. I. Murav’eva, et al., Fluid Dyn. 57, 513 (2022). https://doi.org/10.1134/S0015462822040061

    Article  CAS  Google Scholar 

  79. E. P. Simonenko, N. P. Simonenko, A. F. Kolesnikov, et al., Vacuum (2023) [in press].

  80. E. P. Simonenko, N. P. Simonenko, A. F. Kolesnikov, et al., J. Eur. Ceram. Soc. 42, 30 (2022). https://doi.org/10.1016/j.jeurceramsoc.2021.09.020

    Article  CAS  Google Scholar 

  81. E. P. Simonenko, N. P. Simonenko, A. F. Kolesnikov, et al., Russ. J. Inorg. Chem. 66, 1405 (2021). https://doi.org/10.1134/S003602362109014X

    Article  CAS  Google Scholar 

  82. I. V. Lukomskii, A. V. Chaplygin, and A. F. Kolesnikov, RF Patent 205572 (2021).

  83. N. E. Afonina, V. G. Gromov, and V. I. Sakharov, Proceedings of the 5th European Symposium on Aerothermodynamics for Space Vehicles, 2004, p. 323.

  84. C. L. Burdick and E. A. Owen, J. Am. Chem. Soc. 40, 1749 (1918). https://doi.org/10.1021/ja02245a001

    Article  CAS  Google Scholar 

  85. H. Holleck, J. Nucl. Mater. 21, 14 (1967). https://doi.org/10.1016/0022-3115(67)90724-6

    Article  CAS  Google Scholar 

  86. J. Marschall, D. Pejakovic, W. G. Fahrenholtz, et al., J. Thermophys. Heat Transf. 26, 559 (2012). https://doi.org/10.2514/1.T3798

    Article  CAS  Google Scholar 

  87. K. R. Whittle, G. R. Lumpkin, and S. E. Ashbrook, J. Solid State Chem. 179, 512 (2006). https://doi.org/10.1016/j.jssc.2005.11.011

    Article  CAS  Google Scholar 

  88. R. R. Shuvalov and P. C. Burns, Acta Crystallogr. Sect. C: Cryst. Struct. Commun. 59, I47 (2003). https://doi.org/10.1107/S0108270103009685

    Article  CAS  Google Scholar 

  89. E. P. Simonenko, N. P. Simonenko, A. S. Lysenkov, et al., Russ. J. Inorg. Chem. 65, 446 (2020). https://doi.org/10.1134/S0036023620030146

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The microstructure and phase composition of the samples were studied using the equipment at the Center for Collective Use of the Physical Methods of Investigation of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, which operates with the financial support of the Ministry of Education and Science of the Russian Federation within the framework of the State Assignment of the Kurnakov Institute of General and Inorganic Chemistry.

Funding

The study of the thermochemical behavior of a sample doped with graphene was supported by the Russian Foundation for Basic Research (grant no. 20-01-00056). The experiment at the VGU-4 HF plasma torch was partly supported by the State Assignment of the Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences (registration no. AAAA-A20-120011690135-5), and numerical modeling was partly supported by the State Assignment of the Institute of Mechanics, Moscow State University (State registration no. AAAA-A16-116021110205-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, E.P., Simonenko, N.P., Kolesnikov, A.F. et al. Effect of 2 vol % Graphene Additive on Heat Transfer of Ceramic Material in Underexpanded Jets of Dissociated Air. Russ. J. Inorg. Chem. 67, 2050–2061 (2022). https://doi.org/10.1134/S0036023622601866

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601866

Keywords:

Navigation