Log in

Synthesis of Nanoscale Co3O4 Spinel and Its Application to Form Miniature Planar Structures by Microplotter Printing

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The formation of nanocrystalline Co3O4 by chemical precipitation has been studied. The validation of the obtained semiproduct has been carried out using simultaneous thermal analysis, infrared spectroscopy, and X-ray powder diffraction analysis. The process of thermal decomposition of the semiproduct with the formation of the target oxide, which is a highly dispersed powder (the average CSR size was about 17 ± 2 nm), free of impurities has been investigated. An approach to microplotter printing of miniature planar Co3O4 nanostructures of different geometries on the surface of silicon substrates with the use of functional inks made on the basis of the obtained nanopowder has been proposed. The features of the morphology of the formed thin-film structures have been investigated. It is shown that there is practically no “coffee ring” effect. As part of the local electrophysical characteristics study of the obtained samples, the distribution maps of surface potential and capacitance contrast have been built, and the value of the electronic work function has been calculated. As a result of the study, the possibility of using the developed technology for the manufacturing of electrode structures Co3O4 for supercapacitors of planar type has been shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Z. Wang, C. Meng, W. Zhang, et al., Sci. Total Environ. 814, 152698 (2022). https://doi.org/10.1016/j.scitotenv.2021.152698

    Article  CAS  Google Scholar 

  2. H. Cai, J. Li, H. Yin, et al., Water Environ. Res. 92, 1363 (2020). https://doi.org/10.1002/wer.1324

    Article  CAS  Google Scholar 

  3. A. Waris, M. Din, A. Ali, et al., Open Life Sci. 16, 14 (2021). https://doi.org/10.1515/biol-2021-0003

    Article  CAS  Google Scholar 

  4. A. Chaudhary, D. K. Pathak, T. Ghosh, et al., ACS Appl. Electron. Mater. 2, 1768 (2020). https://doi.org/10.1021/acsaelm.0c00342

    Article  CAS  Google Scholar 

  5. P. Wang, C. **, D. Zheng, et al., ACS Appl. Mater. Interfaces 13, 26621 (2021). https://doi.org/10.1021/acsami.1c05748

    Article  CAS  Google Scholar 

  6. J. M. Xu and J. P. Cheng, J. Alloys Compd. 686, 753 (2016). https://doi.org/10.1016/j.jallcom.2016.06.086

    Article  CAS  Google Scholar 

  7. T. Zhe, M. Li, F. Li, et al., Food Chem. 367, 130666 (2022). https://doi.org/10.1016/j.foodchem.2021.130666

    Article  CAS  Google Scholar 

  8. X. Deng, H. Zhang, J. Zhang, et al., RSC Adv. 10, 43825 (2020). https://doi.org/10.1039/D0RA08319D

    Article  CAS  Google Scholar 

  9. Y. Shi, X. Pan, B. Li, et al., Chem. Eng. J. 343, 427 (2018). https://doi.org/10.1016/j.cej.2018.03.024

    Article  CAS  Google Scholar 

  10. K. Kalam, H. Seemen, M. Mikkor, et al., Thin Solid Films 669, 294 (2019). https://doi.org/10.1016/j.tsf.2018.11.008

    Article  CAS  Google Scholar 

  11. K. E. K. Holden and J. F. Conley, J. Vac. Sci. Technol. A 37, 020903 (2019). https://doi.org/10.1116/1.5064469

    Article  CAS  Google Scholar 

  12. X. Yin, Z. Wang, J. Wang, et al., Mater. Lett. 120, 73 (2014). https://doi.org/10.1016/j.matlet.2014.01.011

    Article  CAS  Google Scholar 

  13. R. C. Ambare, S. R. Bharadwaj, and B. J. Lokhande, Appl. Surf. Sci. 349, 887 (2015). https://doi.org/10.1016/j.apsusc.2015.04.175

    Article  CAS  Google Scholar 

  14. A. A. Yadav and U. J. Chavan, Electrochim. Acta 232, 370 (2017). https://doi.org/10.1016/j.electacta.2017.02.157

    Article  CAS  Google Scholar 

  15. J. Hao, S. Peng, H. Li, et al., J. Mater. Chem. A 6, 16094 (2018). https://doi.org/10.1039/c8ta06349d

    Article  CAS  Google Scholar 

  16. S. F. Shen, M. L. Xu, D. B. Lin, et al., Appl. Surf. Sci. 396, 327 (2017). https://doi.org/10.1016/j.apsusc.2016.10.147

    Article  CAS  Google Scholar 

  17. T. L. Simonenko, V. A. Bocharova, Ph. Yu. Gorobtsov, et al., Russ. J. Inorg. Chem. 65, 1304 (2020). https://doi.org/10.1134/S0036023620090181

    Article  CAS  Google Scholar 

  18. L. Abdelhak, B. Amar, B. Bedhiaf, et al., High Temp. Mater. Process. 38, 237 (2019). https://doi.org/10.1515/htmp-2017-0185

    Article  CAS  Google Scholar 

  19. A. Lakehal, B. Benrabah, A. Bouaza, et al., Chinese J. Phys. 56, 1845 (2018). https://doi.org/10.1016/j.cjph.2018.08.012

    Article  CAS  Google Scholar 

  20. M. A. Chougule, S. G. Pawar, P. R. Godse, et al., J. Mater. Sci. Mater. Electron. 23, 772 (2012). https://doi.org/10.1007/s10854-011-0491-x

    Article  CAS  Google Scholar 

  21. U. Lagerqvist, Adv. Mater. 3, 52 (2014). https://doi.org/10.11648/j.am.20140305.14

    Article  Google Scholar 

  22. M. M. Zhang and G. S. Jiang, Chinese J. Chem. Phys. 20, 315 (2007). https://doi.org/10.1088/1674-0068/20/03/315-318

    Article  CAS  Google Scholar 

  23. U. S. Choi, G. Sakai, K. Shimanoe, et al., Sensors Actuators 107, 397 (2005). https://doi.org/10.1016/j.snb.2004.10.033

    Article  CAS  Google Scholar 

  24. A. Bashir, S. Shukla, J. H. Lew, et al., Nanoscale 10, 2341 (2018). https://doi.org/10.1039/c7nr08289d

    Article  CAS  Google Scholar 

  25. E. P. Simonenko, A. S. Mokrushin, N. P. Simonenko, et al., Thin Solid Films 670, 46 (2019). https://doi.org/10.1016/j.tsf.2018.12.004

    Article  CAS  Google Scholar 

  26. B. S. Yadav, S. R. Dey, and S. R. Dhage, Sol. Energy 179, 363 (2019). https://doi.org/10.1016/j.solener.2019.01.003

    Article  CAS  Google Scholar 

  27. P. F. Newhouse and B. A. Parkinson, J. Mater. Chem. A 3, 5901 (2015). https://doi.org/10.1039/c4ta05671j

    Article  CAS  Google Scholar 

  28. Q. **g, Y. S. Choi, M. Smith, et al., Adv. Mater. Technol. 4, 1900048 (2019). https://doi.org/10.1002/admt.201900048

    Article  CAS  Google Scholar 

  29. I. A. Volkov, N. P. Simonenko, A. A. Efimov, et al., Appl. Sci. 11, 526 (2021). https://doi.org/10.3390/app11020526

    Article  CAS  Google Scholar 

  30. P. Sobolewski, A. Goszczynska, M. Aleksandrzak, et al., Beilstein J. Nanotechnol. 8, 1508 (2017). https://doi.org/10.3762/bjnano.8.151

    Article  CAS  Google Scholar 

  31. F. S. Fedorov, N. P. Simonenko, V. Trouillet, et al., ACS Appl. Mater. Interfaces 12, 56135 (2020). https://doi.org/10.1021/acsami.0c14055

    Article  CAS  Google Scholar 

  32. T. L. Simonenko, N. P. Simonenko, Ph. Y. Gorobtsov, et al., J. Colloid Interface Sci. 588, 209 (2021). https://doi.org/10.1016/j.jcis.2020.12.052

    Article  CAS  Google Scholar 

  33. T. L. Simonenko, N. P. Simonenko, Ph. Yu. Gorobtsov, et al., Ceram. Int. 48, 22401 (2022). https://doi.org/10.1016/j.ceramint.2022.04.252

    Article  CAS  Google Scholar 

  34. A. S. Mokrushin, T. L. Simonenko, N. P. Simonenko, et al., Appl. Surf. Sci. 578, 151984 (2022). https://doi.org/10.1016/j.apsusc.2021.151984

    Article  CAS  Google Scholar 

  35. N. P. Simonenko, N. S. Kadyrov, T. L. Simonenko, et al., Russ. J. Inorg. Chem. 66, 1283 (2021). https://doi.org/10.1134/S0036023621090126

    Article  CAS  Google Scholar 

  36. V. Soum, H. Cheong, K. Kim, et al., ACS Omega 3, 16866 (2018). https://doi.org/10.1021/acsomega.8b02592

    Article  CAS  Google Scholar 

  37. T. L. Simonenko, N. P. Simonenko, Ph. Yu. Gorobtsov, et al., J. Alloys Compd. 832, 154957 (2020). https://doi.org/10.1016/j.jallcom.2020.154957

    Article  CAS  Google Scholar 

  38. T. L. Simonenko, N. P. Simonenko, Ph. Yu. Gorobtsov, et al., Russ. J. Inorg. Chem. 66, 1416 (2021). https://doi.org/10.1134/S0036023621090138

    Article  CAS  Google Scholar 

  39. X. Wang, A. Hu, C. Meng, et al., Molecules 25 (2020). https://doi.org/10.3390/molecules25020269

  40. F. Liu, B. Zhang, H. Su, et al., Nanotechnology 27, 355603 (2016). https://doi.org/10.1088/0957-4484/27/35/355603

    Article  CAS  Google Scholar 

  41. X. Wang, H. **a, X. Wang, et al., J. Alloys Compd. 686, 969 (2016). https://doi.org/10.1016/j.jallcom.2016.06.156

    Article  CAS  Google Scholar 

  42. V. Venkatachalam, A. Alsalme, A. Alswieleh, et al., J. Mater. Sci. Mater. Electron. 29, 6059 (2018). https://doi.org/10.1007/s10854-018-8580-8

    Article  CAS  Google Scholar 

  43. G. R. Peterson, F. Hung-Low, C. Gumeci, et al., ACS Appl. Mater. Interfaces 6, 1796 (2014). https://doi.org/10.1021/am4047969

    Article  CAS  Google Scholar 

  44. A. Lakehal, B. Bedhiaf, A. Bouaza, et al., Mater. Res. 21 (2018). https://doi.org/10.1590/1980-5373-mr-2017-0545

  45. Z. Zhu, C. Han, T.-T. Li, et al., CrystEngComm. 20, 3812 (2018). https://doi.org/10.1039/C8CE00613J

    Article  CAS  Google Scholar 

  46. Z. **ao, L. Fan, B. Xu, et al., ACS Appl. Mater. Interfaces 9, 41827 (2017). https://doi.org/10.1021/acsami.7b10309

    Article  CAS  Google Scholar 

  47. H. Guan, C. Shao, S. Wen, et al., Mater. Chem. Phys. 82, 1002 (2003). https://doi.org/10.1016/j.matchemphys.2003.09.003

    Article  CAS  Google Scholar 

  48. D. Hu, R. Wang, P. Du, et al., Ceram. Int. 48, 6549 (2022). https://doi.org/10.1016/j.ceramint.2021.11.202

    Article  CAS  Google Scholar 

  49. S. Lu, X. **g, J. Liu, et al., J. Solid State Chem. 197, 345 (2013). https://doi.org/10.1016/j.jssc.2012.09.020

    Article  CAS  Google Scholar 

  50. C. T. Anuradha and P. Raji, Int. J. Nanosci. 18, 1950002 (2019). https://doi.org/10.1142/S0219581X19500029

    Article  CAS  Google Scholar 

  51. W. Zhang, K. Lassen, C. Descorme, et al., Appl. Catal. 282, 119566 (2021). https://doi.org/10.1016/j.apcatb.2020.119566

    Article  CAS  Google Scholar 

  52. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Glass Phys. Chem. 44, 314 (2018). https://doi.org/10.1134/S1087659618040144

    Article  CAS  Google Scholar 

  53. M. V. Kalinina, L. V. Morozova, T. L. Egorova, et al., Glass Phys. Chem. 42, 505 (2016). https://doi.org/10.1134/S1087659616050060

    Article  CAS  Google Scholar 

  54. T. L. Egorova, M. V. Kalinina, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 62, 1275 (2017). https://doi.org/10.1134/S0036023617100072

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Council on grants of the President of the Russian Federation for state support of young Russian scientists MK-1749.2022.1.3 (in terms of obtaining oxide nanopowder and coating formation). X-ray powder diffraction and SEM studies were carried out using shared experimental facilities supported by the Ministry of Science and Higher Education of the Russian Federation as part of the IGIC RAS state assignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, T.L., Simonenko, N.P., Topalova, Y.P. et al. Synthesis of Nanoscale Co3O4 Spinel and Its Application to Form Miniature Planar Structures by Microplotter Printing. Russ. J. Inorg. Chem. 67, 1939–1947 (2022). https://doi.org/10.1134/S003602362260174X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602362260174X

Keywords:

Navigation