Log in

Effect of the Conditions of the AACVD Synthesis of Thin Nanostructured ZnO Films on Their Microstructural, Optical, and Gas-Sensing Characteristics

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The effect of the parameters of the synthesis of finely divided ZnO by aerosol deposition from the gas phase on its microstructural characteristics was studied to develop an efficient method for creating selective gas-sensing films based on semiconductor metal oxides. It was shown that an increase in the operating temperature from 350 to 450°С leads to a change in the shape of the nanoparticles from spherical to rod-shaped and in the continuity of the coatings. The optical and chemoresistive gas-sensing properties of the obtained films were studied, the band gap was calculated in two ways. The highest sensitivity was measured at a detection temperature of 300°C to acetone and ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. T. Ma, Mater. Sci. Semicond. Process 121, 105413 (2021). https://doi.org/10.1016/j.mssp.2020.105413

    Article  CAS  Google Scholar 

  2. L. Huang, D. Han, Z. Chen, et al., Jpn. J. Appl. Phys. 54, 04DJ07 (2015). https://doi.org/10.7567/JJAP.54.04DJ07

    Article  CAS  Google Scholar 

  3. V. K. Kaushik, C. Mukherjee, and P. K. Sen, J. Mater. Sci. Mater. Electron 29, 15156 (2018). https://doi.org/10.1007/s10854-018-9657-0

    Article  CAS  Google Scholar 

  4. F. Xu and H. P. Ho, Micromachines 8, 333 (2017). https://doi.org/10.3390/mi8110333

    Article  Google Scholar 

  5. H. Ji, W. Zeng, and Y. Li, Nanoscale 11, 22664 (2019). https://doi.org/10.1039/c9nr07699a

    Article  CAS  Google Scholar 

  6. S. Sánchez-Martín, S. M. Olaizola, E. Castaño, et al., RSC Adv. 11, 18493 (2021). https://doi.org/10.1039/d1ra03251h

    Article  CAS  Google Scholar 

  7. R. Siddheswaran, M. Netrvalová, J. Savková, et al., J. Alloys Compd. 636, 85 (2015). https://doi.org/10.1016/j.jallcom.2015.02.142

    Article  CAS  Google Scholar 

  8. G. Wisz, I. Virt, P. Sagan, et al., Nanoscale Res. Lett. 12 (2017). https://doi.org/10.1186/s11671-017-2033-9

  9. T. Y. Wu, Y. S. Huang, S. Y. Hu, et al., Solid State Commun. 237–238, 1 (2016). https://doi.org/10.1016/j.ssc.2016.03.015

    Article  CAS  Google Scholar 

  10. M. I. Khan, K. A. Bhatti, R. Qindeel, et al., Results Phys. 7, 651 (2017). https://doi.org/10.1016/j.rinp.2016.12.029

    Article  Google Scholar 

  11. S. Edinger, N. Bansal, M. Bauch, et al., J. Mater. Sci. 52, 8591 (2017). https://doi.org/10.1007/s10853-017-1084-8

    Article  CAS  Google Scholar 

  12. S. W. Cho, C. H. Ahn, M. G. Yun, et al., Thin Solid Films 562, 597 (2014). https://doi.org/10.1016/j.tsf.2014.04.003

    Article  CAS  Google Scholar 

  13. C. H. Lee and M. S. Choi, Thin Solid Films 605, 157 (2016). https://doi.org/10.1016/j.tsf.2015.09.050

    Article  CAS  Google Scholar 

  14. M. Claros, M. Setka, Y. P. Jimenez, et al., Nanomaterials 10, 1 (2020). https://doi.org/10.3390/nano10030471

    Article  CAS  Google Scholar 

  15. D. S. Bhachu, G. Sankar, and I. P. Parkin, Chem. Mater. 24, 4704 (2012). https://doi.org/10.1021/cm302913b

    Article  CAS  Google Scholar 

  16. D. B. Potter, I. P. Parkin, and C. J. Carmalt, RSC Adv. 8, 33164 (2018). https://doi.org/10.1039/C8RA06417B

  17. C. E. Knapp and C. J. Carmalt, Chem. Soc. Rev. 45, 1036 (2016). https://doi.org/10.1039/c5cs00651a

    Article  CAS  Google Scholar 

  18. S. Iram, A. Mahmood, M. F. Ehsan, et al., Nanomaterials 11, 1 (2021). https://doi.org/10.3390/nano11112817

    Article  CAS  Google Scholar 

  19. A. Shukla, V. K. Kaushik, and D. Prasher, Electron. Mater. Lett. 10, 61 (2014). https://doi.org/10.1007/s13391-013-3039-9

    Article  CAS  Google Scholar 

  20. X. J. Qin, L. Zhao, G. J. Shao, et al., Thin Solid Films 542, 144 (2013). https://doi.org/10.1016/j.tsf.2013.07.002

    Article  CAS  Google Scholar 

  21. E. Navarrete, C. Bittencourt, P. Umek, et al., J. Mater. Chem. C 6, 5181 (2018). https://doi.org/10.1039/c8tc00571k

    Article  CAS  Google Scholar 

  22. T. Saidi, D. Palmowski, S. Babicz-Kiewlicz, et al., Sens. Actuators, B: Chem. 273, 1719 (2018). https://doi.org/10.1016/j.snb.2018.07.098

    Article  CAS  Google Scholar 

  23. M. Tomić, I. Grácia, M. Salleras, et al., Proceedings of the 12 th Spanish Conference of Electron Devices CDE 2018, 2018. https://doi.org/10.1109/CDE.2018.8597067

  24. E. Navarrete, C. Bittencourt, P. Umek, et al., J. Alloys Compd. 812, 152156 (2020). https://doi.org/10.1016/j.jallcom.2019.152156

    Article  CAS  Google Scholar 

  25. É. Navarrete, C. Bittencourt, X. Noirfalise, et al., Sens. Actuators, B: Chem. 298, 126868 (2019). https://doi.org/10.1016/j.snb.2019.126868

    Article  CAS  Google Scholar 

  26. J. Ding, S. Chen, N. Han, et al., Ceram. Int. 46, 15152 (2020). https://doi.org/10.1016/j.ceramint.2020.03.051

    Article  CAS  Google Scholar 

  27. S. Vallejos, N. Pizúrová, J. Čechal, et al., J. Vis. Exp. 2017, 127 (2017). https://doi.org/10.3791/56127

    Article  CAS  Google Scholar 

  28. S. Vallejos, I. Gracia, E. Figueras, et al., Proceedings of the 12 th Spanish Conference of Electron Devices CDE 2017, 2017. https://doi.org/10.1109/CDE.2017.7905206

  29. S. Vallejos, N. Pizurova, I. Gracia, et al., ACS Appl. Mater. Interfaces 8, 33335 (2016). https://doi.org/10.1021/acsami.6b12992

    Article  CAS  Google Scholar 

  30. D. Yang, R. A. Gopal, T. Lkhagvaa, et al., Meas. Sci. Technol. 32 (2021). https://doi.org/10.1088/1361-6501/ac03e3

  31. C. Baldini, L. Billeci, F. Sansone, et al., Biosensors 10, 1 (2020). https://doi.org/10.3390/bios10080084

    Article  CAS  Google Scholar 

  32. A. D. Wilson, Metabolites 5, 140 (2015). https://doi.org/10.3390/metabo5010140

    Article  CAS  Google Scholar 

  33. A. A. Ganeev, A. R. Gubal, G. N. Lukyanov, et al., Russ. Chem. Rev. 87, 904 (2018). https://doi.org/10.1070/rcr4831

    Article  CAS  Google Scholar 

  34. J. C. Licht and H. Grasemann, Int. J. Mol. Sci 21, 1 (2020). https://doi.org/10.3390/ijms21249416

    Article  CAS  Google Scholar 

  35. C. A. Schneider, W. S. Rasband, and K. W. Eliceiri, Nat. Methods 9, 671 (2012). https://doi.org/10.1038/nmeth.2089

    Article  CAS  Google Scholar 

  36. A. S. Mokrushin, N. A. Fisenko, P. Y. Gorobtsov, et al., Talanta 221 (2021). https://doi.org/10.1016/j.talanta.2020.121455

  37. A. S. Mokrushin, T. L. Simonenko, N. P. Simonenko, et al., J. Alloys Compd. 868, 159090 (2021). https://doi.org/10.1016/j.jallcom.2021.159090

    Article  CAS  Google Scholar 

  38. I. A. Nagornov, A. S. Mokrushin, E. P. Simonenko, et al., Ceram. Int. 46, 7756 (2020). https://doi.org/10.1016/j.ceramint.2019.11.279

    Article  CAS  Google Scholar 

  39. T. L. Simonenko, N. P. Simonenko, P. Y. Gorobtsov, et al., J. Alloys Compd. 832, 154957 (2020). https://doi.org/10.1016/j.jallcom.2020.154957

    Article  CAS  Google Scholar 

  40. M. Caglar, S. Ilican, and Y. Caglar, Thin Solid Films 517, 5023 (2009). https://doi.org/10.1016/j.tsf.2009.03.037

    Article  CAS  Google Scholar 

  41. M. Wang, Y. Zhu, Q. Luo, et al., Appl. Surf. Sci. 566 (2021). https://doi.org/10.1016/j.apsusc.2021.150750

  42. A. Saenz-Trevizo, P. Amezaga-Madrid, P. Piza-Ruiz, et al., Mater. Res. 19, 33 (2016). https://doi.org/10.1590/1980-5373-MR-2015-0612

    Article  CAS  Google Scholar 

  43. A. S. Mokrushin, I. A. Nagornov, T. L. Simonenko, et al., Appl. Surf. Sci. 589 (2022). https://doi.org/10.1016/j.apsusc.2022.152974

  44. A. S. Mokrushin, I. A. Nagornov, T. L. Simonenko, et al., Mater. Sci. Eng. B 271, 115233 (2021). https://doi.org/10.1016/j.mseb.2021.115233

    Article  CAS  Google Scholar 

  45. NOISH. Documentation for Immediately Dangerous to Life or Health Concentrations (IDLHs)-7783064 (National Institute Occupational Safety Health, 1996). http://www.cdc.gov/niosh/idlh/7783064.html

  46. H. Tang, M. Yan, H. Zhang, et al., Sens. Actuators, B: Chem. 114, 910 (2006). https://doi.org/10.1016/j.snb.2005.08.010

    Article  CAS  Google Scholar 

  47. Y. Deng, Semiconducting Metal Oxides for Gas Sensing (Elsevier, 2019). https://doi.org/10.1007/978-981-13-5853-1

Download references

Funding

The study of the gas-sensing properties was supported by a grant of the President of the Russian Federation (grant no. MK-2276.2022.1.3). The development of the methods for the synthesis of semiconductor receptor oxide nanomaterials was supported by the Ministry of Science and Higher Education of the Russian Federation under a state assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia (IGIC RAS). The microstructure and phase composition of the samples were studied using equipment of the Center for Shared Use of Physical Methods of Investigation of Substances and Materials, IGIC RAS, the work of which is supported by the Ministry of Science and Higher Education of the Russian Federation under a state assignment for IGIC RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Mokrushin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrushin, A.S., Gorban, Y.M., Nagornov, I.A. et al. Effect of the Conditions of the AACVD Synthesis of Thin Nanostructured ZnO Films on Their Microstructural, Optical, and Gas-Sensing Characteristics. Russ. J. Inorg. Chem. 67, 2099–2107 (2022). https://doi.org/10.1134/S0036023622601520

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601520

Keywords:

Navigation