Log in

Phase Diagram of the Nickel–Platinum System

  • PHYSICOCHEMICAL ANALYSIS OF INORGANIC SYSTEMS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The phase diagram of the nickel–platinum system was constructed with extrapolation of phase equilibria to absolute zero temperature according to the requirements of the third law of thermodynamics. An fcc continuous solid solution crystallizing from the melt undergoes ordering with separation into three intermetallic phases (Kurnakov phases), whose homogeneity regions with decreasing temperature tend to stoichiometric compositions Ni3Pt, NiPt, and NiPt3. With increasing temperature, platinum and nickel occupy some of the crystallographic positions of the second component in the intermetallic phases. In the solid state, in the system, there are two eutectoids with the coordinates (500°C, 36 at % Pt) and (480°C, 64 at % Pt) and three dystectoids with the coordinates (515°C, 31 at % Pt), (645°C, 50 at %Pt), and (510°C, 72 at % Pt).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. N. S. Kurnakow and W. A. Nemilov, Z. Anorg. Allg. Chem. 210, 1 (1933).

    Article  Google Scholar 

  2. M. Khansen and K. Anderko, Structures of Double Alloys (Metallurgizdat, Moscow, 1962) [in Russian].

    Google Scholar 

  3. A. Kusmann and H. Nitka, Phys. Z. 39, 373 (1938).

    Google Scholar 

  4. A. Kusmann and H. E. Steinwehr, Z. Met. 40, 263 (1949).

  5. U. Esch and A. Schneider, Z. Electrochem. 50, 268 (1944).

  6. R. S. Oriani and T. S. Jones, Acta Metall. 1, 243 (1953).

    Article  Google Scholar 

  7. G. C. Woolley and B. Bates, J. Less-Common Met. 2, 11 (1960).

    Article  CAS  Google Scholar 

  8. M. Greenholz, A. Kidron, and U. Shimony, J. Mater. Sci. 7, 1285 (1972).

    Article  CAS  Google Scholar 

  9. A. R. Miedema, J. Less-Common Met. 46, 67 (1976).

    Article  CAS  Google Scholar 

  10. G. T. Stevens, M. Hatherly, and J. S. Bowles, J. Mater. Sci. 13, 499 (1978).

    Article  CAS  Google Scholar 

  11. C. E. Dahmani, M. C. Cadeville, J. M. Sanchez, and J. L. Moran-Lopez, Phys. Rev. Lett. 55, 1208 (1985).

    Article  CAS  Google Scholar 

  12. M. C. Cadeville, C. E. Dahmani, and F. Kern, J. Magn. Magn. Mater. 54–57, 1055 (1986).

    Article  Google Scholar 

  13. P. Nash and M. F. Singleton, Bull. Alloy Phase Diagr. 10, 258 (1989).

    Article  CAS  Google Scholar 

  14. X. -G. Lu, B. Sundman, and J. Agren, CALPHAD 33, 450 (2009).

    Article  CAS  Google Scholar 

  15. B. Schonfeld, M. Engelke, and A. S. Sologubenko, Philos. Mag. 95, 1080 (2015).

    Article  CAS  Google Scholar 

  16. A. A. Popov, A. D. Varygin, P. E. Plyusnin, et al., J. Alloys Compd. 891, 161974 (2021). https://doi.org/10.1016/j.jallcom.2021.161974

    Article  CAS  Google Scholar 

  17. A. A. Popov, Cand. Sci. (Chem.) Diss. (Novosibirsk, 2021).

  18. Q. C. Tran, H. An, H. Ha, et al., J. Mater. Chem. A 6, 8259 (2018).

    Article  CAS  Google Scholar 

  19. S. Ali, I. Khan, S. A. Khan, et al., J. Electroanal. Chem. 795, 17 (2017).

    Article  CAS  Google Scholar 

  20. S. S. A. Razee, J. B. Staunton, F. J. Pinski, et al., J. Appl. Phys. 83, 7097 (1998).

    Article  CAS  Google Scholar 

  21. N. S. Kurnakov, S. F. Zemczuzny, M. M. Zasedatelev, J. Inst. Met. London, 15, 305 (1916).

  22. P. P. Fedorov and S. N. Volkov, Russ. J. Inorg. Chem. 61, 772 (2016). https://doi.org/10.1134/S0036023616060061

    Article  CAS  Google Scholar 

  23. A. A. Smirnov, Molecular Kinetic Theory of Metals (Nauka, Moscow, 1966) [in Russian].

    Google Scholar 

  24. P. P. Fedorov, Russ. J. Inorg. Chem. 37, 973 (1992).

    Google Scholar 

  25. P. P. Fedorov, Russ. J. Inorg. Chem. 55, 1722 (2010). https://doi.org/10.1134/S0036023610110100

    Article  CAS  Google Scholar 

  26. P. P. Fedorov, A. A. Alexandrov, V. V. Voronov, et al., J. Am. Ceram. Soc. 104, 2836 (2021). https://doi.org/10.1111/jace.17666

    Article  CAS  Google Scholar 

  27. W. Nernst, The New Heat Theorem (Methuen and Co, London, 1917).

    Google Scholar 

  28. J. P. Abriata and D. E. Laughlin, Prog. Mat. Sci. 49, 367 (2004).

    Article  CAS  Google Scholar 

  29. D. E. Laughlin and W. A. Soffa, Acta Mater. 145, 49 (2018). https://doi.org/10.1016/j.actamat.2017.11.037

    Article  CAS  Google Scholar 

  30. F. A. Kroger, Chemistry of Imperfect Crystals (North-Holland, 1964).

    Book  Google Scholar 

  31. P. P. Fedorov, Yu. V. Shubin, and E. V. Chernova, Russ. J. Inorg. Chem. 66, 891 (2021). https://doi.org/10.1134/S0036023621050053

    Article  CAS  Google Scholar 

  32. R. S. Irani, Contemp. Phys. 13, 559 (1972). https://doi.org/10.1080/00107517208228017

    Article  CAS  Google Scholar 

  33. A. Aharony, in Lecture Notes in Physics, Ed. by F. J. W. Hahne (Springer, Berlin, 1983). https://doi.org/10.1007/3-540-12675-9_13

  34. P. Pfeuty and G. Toulouse, Introduction to the Renormalization Group and to Critical Phenomena (John Wiley and Sons, London, 1977).

    Google Scholar 

  35. M. A. Anisimov, E. E. Gorodetskii, and V. M. Zaprudskii, Sov. Phys. Usp. 24, 57 (1981). https://doi.org/10.1070/PU1981v024n01ABEH004612

    Article  Google Scholar 

  36. N. E. Phillips, Ann. Rev. Phys. Chem. 19, 559 (1968).

    Article  CAS  Google Scholar 

  37. B. N. Esel’son, V. I. Grigor’ev, V. G. Ivantsov, et al., Solutions of Quantum Liquids He 3 –He 4 (Moscow, Nauka, 1973) [in Russian].

    Google Scholar 

  38. J. R. Goldsmith and H. C. Heard, J. Geol. 69, 45 (1961).

    Article  CAS  Google Scholar 

  39. P. P. Fedorov, A. A. Alexandrov, S. V. Kuznetsov, and V. V. Voronov, J. Chem. Thermodyn. 149, 106178 (2020). https://doi.org/10.1016/j.jct.2020.106178

    Article  CAS  Google Scholar 

  40. P. P. Fedorov, V. Yu. Proydakova, S. V. Kuznetsov, et al., J. Am. Ceram. Soc. 103, 3390 (2020). https://doi.org/10.1111/jace.16996

    Article  CAS  Google Scholar 

  41. U. R. Kattner and B. P. Burton, Phase Diagrams of Binary Iron Alloys (ASM International, Materials Park, OH, 12, 1992).

    Google Scholar 

  42. I. Prigozhin and R. Defei, Chemical Thermodynamics (Nauka, Novosibirsk, 1966) [in Russian].

    Google Scholar 

  43. A. I. Gusev, Nonstoichiometry, Disorder, Short-Range and Long-Range Order in Solids (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 22-13-00167, https://rscf.ru/project/22-13-00167/) and also under a state assignment for basic scientific research for the Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia, (project no. 121031700315-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Fedorov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorov, P.P., Popov, A.A., Shubin, Y.V. et al. Phase Diagram of the Nickel–Platinum System. Russ. J. Inorg. Chem. 67, 2018–2022 (2022). https://doi.org/10.1134/S0036023622601453

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601453

Keywords:

Navigation