Log in

Synthesis of Vanadium-Doped Nano-Sized WO3 by a Combination of Sol–Gel Process and Hydrothermal Treatment

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The synthesis of nano-sized oxide WO3–25 at % VO2 by a combination of sol–gel process and hydrothermal treatment using metal alkoxoacetylacetonates as precursors was studied. The synthesis gave the oxide powder isomorphous to hexagonal tungsten(VI) oxide. The thermal behavior of the powder in an air flow was studied by simultaneous thermal analysis in the temperature range of 25–600°C. The resulting particles were shaped as nanorods. Using Kelvin probe force microscopy, the electron work function of the material surface was determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Y. Shabdan, A. Markhabayeva, and N. Bakranov, Nanomaterials 10, 1871 (2020). https://doi.org/10.3390/nano10091871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. M. Ataalla, A. S. Afify, M. Hassan, et al., J. Non. Cryst. Solids 491, 43 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.03.050

    Article  CAS  Google Scholar 

  3. C. G. Granqvist, Thin Solid Films 564, 1 (2014). https://doi.org/10.1016/j.tsf.2014.02.002

    Article  CAS  Google Scholar 

  4. A. Chithambararaj, P. Nandigana, Kumar M. Kaleesh, et al., Appl. Surf. Sci. 582 (2022). https://doi.org/10.1016/j.apsusc.2022.152424

  5. L. Yang, D. Ge, J. Zhao, et al., Sol. Energy Mater. Sol. Cells 100, 251 (2012). https://doi.org/10.1016/j.solmat.2012.01.028

    Article  CAS  Google Scholar 

  6. M. Zheng, H. Tang, Q. Hu, et al., Adv. Funct. Mater. 28, 1707500 (2018). https://doi.org/10.1002/adfm.201707500

    Article  CAS  Google Scholar 

  7. Y. Yao, D. Sang, L. Zou, et al., Nanomaterials 11, 2136 (2021). https://doi.org/10.3390/nano11082136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. V. A. Buzanovskii, Rev. J. Chem. 5, 215 (2015). https://doi.org/10.1134/s2079978015030012

    Article  CAS  Google Scholar 

  9. Z. Hai, Z. Wei, C. Xue, et al., J. Mater. Chem. 7, 12968 (2019). https://doi.org/10.1039/c9tc04489b

  10. G. A. Niklasson, L. Berggren, and A. L. Larsson, Sol. Energy Mater. Sol. Cells 84, 315 (2004). https://doi.org/10.1016/j.solmat.2004.01.045

    Article  CAS  Google Scholar 

  11. M. Alsawafta, Y. M. Golestani, T. Phonemac, et al., J. Electrochem. Soc. 161, H276 (2014). https://doi.org/10.1149/2.012405jes

    Article  CAS  Google Scholar 

  12. W. T. Wu, W. P. Liao, L. Y. Chen, et al., Phys. Chem. Chem. Phys. 11, 9751 (2009). https://doi.org/10.1039/b912202h

    Article  CAS  PubMed  Google Scholar 

  13. W. Q. Wang, Z. J. Yao, X. L. Wang, et al., J. Colloid Interface Sci. 535, 300 (2019). https://doi.org/10.1016/j.jcis.2018.10.006

    Article  CAS  PubMed  Google Scholar 

  14. A. A. Isari, M. Mehregan, S. Mehregan, et al., J. Hazard. Mater. 390, 122050 (2020). https://doi.org/10.1016/j.jhazmat.2020.122050

  15. Z. Jiao, X. Wang, J. Wang, et al., Chem. Commun. 48, 365 (2012). https://doi.org/10.1039/c1cc15629b

    Article  CAS  Google Scholar 

  16. T. A. J. Siddiqui, S. F. Shaikh, B. B. Totawar, et al., Dalton Trans. 50, 2032 (2021). https://doi.org/10.1039/d0dt04238b

    Article  CAS  PubMed  Google Scholar 

  17. X. H. Guan, Z. W. Zhang, L. Yang, et al., ChemPlusChem 82, 1174 (2017). https://doi.org/10.1002/cplu.201700288

    Article  CAS  PubMed  Google Scholar 

  18. Z. Jiao, J. Wang, L. Ke, et al., ACS Appl. Mater. Interfaces 3, 229 (2011). https://doi.org/10.1021/am100875z

    Article  CAS  PubMed  Google Scholar 

  19. E. Luévano-Hipólito, A. Martínez De La Cruz, Q. L. Yu, et al., Ceram. Int. A 40, 12123 (2014). https://doi.org/10.1016/j.ceramint.2014.04.052

    Article  CAS  Google Scholar 

  20. D. Sánches Martinez, A. Martínez De La Cruz, and E. López Cuéllar, Appl. Catal. A: Gen. 398, 179 (2011). https://doi.org/10.1016/j.apcata.2011.03.034

    Article  CAS  Google Scholar 

  21. M. Verma, R. Chandra, and V. K. Gupta, J. Colloid Interface Sci. 453, 60 (2015). https://doi.org/10.1016/j.jcis.2015.04.039

    Article  CAS  PubMed  Google Scholar 

  22. M. Horprathum, T. Srichaiyaperk, B. Samransuksamer, et al., ACS Appl. Mater. Interfaces 6, 22051 (2014). https://doi.org/10.1021/am505127g

    Article  CAS  PubMed  Google Scholar 

  23. A. J. T. Naik, M. E. A. Warwick, S. J. A. Moniz, et al., J. Mater. Chem. A 1, 1827 (2013). https://doi.org/10.1039/c2ta01126c

    Article  CAS  Google Scholar 

  24. R. O. Bonsu, H. Kim, C. O’Donohue, et al., Dalton Trans. 43, 9226 (2014). https://doi.org/10.1039/c4dt00407h

    Article  CAS  PubMed  Google Scholar 

  25. A. S. Mokrushin, E. P. Simonenko, N. P. Simonenko, et al., J. Sol-Gel Sci. Technol. 92, 415 (2019). https://doi.org/10.1007/s10971-019-04979-4

    Article  CAS  Google Scholar 

  26. E. P. Simonenko, N. P. Simonenko, G. P. Kopitsa, et al., Russ. J. Inorg. Chem. 63, 691 (2018). https://doi.org/10.1134/S0036023618060232

    Article  CAS  Google Scholar 

  27. F. Krumeich, H. Muhr, M. Niederberger, et al., J. Am. Chem. Soc. 121, 8324 (1999).

    Article  CAS  Google Scholar 

  28. J. Polleux, N. Pinna, M. Antonietti, et al., J. Am. Chem. Soc. 127, 15595 (2005). https://doi.org/10.1021/ja0544915

    Article  CAS  PubMed  Google Scholar 

  29. Ph. Yu. Gorobtsov, T. L. Simonenko, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 67, 1094 (2022). https://doi.org/10.1134/S0036023622070105

    Article  CAS  Google Scholar 

  30. M. F. Daniel, B. Desbat, J. C. Lassegues, et al., J. Solid State Chem. 67, 235 (1987). https://doi.org/10.1016/0022-4596(87)90359-8

    Article  CAS  Google Scholar 

  31. I. L. Botto, M. B. Vassallo, E. J. Baran, et al., Mater. Chem. Phys. 50, 267 (1997).

    Article  CAS  Google Scholar 

  32. X. Wu, Z. Wu, C. Ji, et al., Opt. Mater. Express 6, 3500 (2016). https://doi.org/10.1364/ome.6.003500

    Article  CAS  Google Scholar 

  33. S. Han, W. S. Shin, M. Seo, et al., Org. Electron. 10, 791 (2009). https://doi.org/10.1016/j.orgel.2009.03.016

    Article  CAS  Google Scholar 

  34. Ph. Y. Gorobtsov, T. L. Simonenko, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 66, 1811 (2021). https://doi.org/10.1134/S0036023621120032

    Article  CAS  Google Scholar 

Download references

Funding

This study was partly supported by the Russian Foundation for Basic Research (project no. 20-33-90136, synthesis of nano-sized WO3–25 at. % VO2) and by the Ministry of Education and Science of the Russian Federation within the framework of the state assignment of the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences (study of the local electrophysical properties of the material). Powder X-ray diffraction study and SEM examination were carried out using equipment of the Center for Collective Use of the Physical Investigation Methods, Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yu. Gorobtsov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Z. Svitanko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorobtsov, F.Y., Grigoryeva, M.K., Simonenko, T.L. et al. Synthesis of Vanadium-Doped Nano-Sized WO3 by a Combination of Sol–Gel Process and Hydrothermal Treatment. Russ. J. Inorg. Chem. 67, 1706–1710 (2022). https://doi.org/10.1134/S0036023622601131

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622601131

Keywords:

Navigation