Log in

Ion Coordination in Aqueous Lanthanum Chloride and Lanthanum Nitrate Solutions as Probed by X-ray Diffraction

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

The results of an X-ray diffraction experiment in liquids were used to calculate radial distribution functions for water–electrolyte systems comprising lanthanum chloride and lanthanum nitrate over a considerable range of concentrations. A variety of structural models were designed for the systems studied. A set of theoretical functions was calculated for each model, and those functions were compared against the experimentally determined ones. Optimal variants were determined from the best fit between the experiment and calculation. The structural description of the nearest-neighboring of ions has been quantified in the form of coordination numbers, distances in scattering groups, and parameters of various types of ion pairs. The short range order formed by La3+ ions in water–electrolyte mixtures of lanthanum chloride and nitrate and its transformations in response to changing concentration are similar in both systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. P. R. Smirnov and V. N. Trostin, Russ. J. Gen. Chem. 82, 3600 (2012). https://doi.org/10.1134/S1070363212030036

    Article  CAS  Google Scholar 

  2. P. D’Angelo and R. Spezia, Chemistry 18, 11162 (2012). https://doi.org/10.1002/chem.201200572

    Article  CAS  PubMed  Google Scholar 

  3. O. M. D. Lutz, T. S. Hofer, B. R. Randolf, et al., Chem. Phys. Lett. 536, 50 (2012). https://doi.org/10.1016/j.cplett.2012.03.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. A. Marjolin, C. Gourlaouen, C. Clavaguéra, et al., J. Mol. Model. 20, 2471 (2014). https://doi.org/10.1007/s00894-014-2471-6

    Article  CAS  PubMed  Google Scholar 

  5. J. Zhang, N. Heinz, and M. Dolg, Inorg. Chem. 53, 7700 (2014). https://doi.org/10.1021/ic500991x

    Article  CAS  PubMed  Google Scholar 

  6. N. Morales, E. Galbis, J. M. Martínez, et al., J. Phys. Chem. Lett. 7, 4275 (2016). https://doi.org/10.1021/acs.jpclett.6b02067

    Article  CAS  PubMed  Google Scholar 

  7. B. Qiao, S. Skanthakumar, and L. Soderholm, J. Chem. Theory Comput. 14, 1781 (2018). https://doi.org/10.1021/acs.jctc.7b01018

    Article  CAS  PubMed  Google Scholar 

  8. V. Migliorati, A. Serva, F. M. Terenzio, et al., Inorg. Chem. 56, 6214 (2017). https://doi.org/10.1021/acs.inorgchem.7b00207

    Article  CAS  PubMed  Google Scholar 

  9. V. Migliorati, A. Serva, F. Sessa, et al., J. Phys. Chem. B 122, 2779 (2018). https://doi.org/10.1021/acs.jpcb.7b12571

    Article  CAS  PubMed  Google Scholar 

  10. W. W. Rudolph and G. Irmer, Dalton Trans. 46, 4235 (2017). https://doi.org/10.1039/C7DT00008A

    Article  CAS  PubMed  Google Scholar 

  11. W. W. Rudolph and G. Irmer, J. Solution Chem. 49, 316 (2020). https://doi.org/10.1007/s10953-020-00960-w

    Article  CAS  Google Scholar 

  12. R. C. Shiery, J. L. Fulton, M. Balasubramanian, et al., Inorg. Chem. 60, 3117 (2021). https://doi.org/10.1021/acs.inorgchem.0c03438

    Article  CAS  PubMed  Google Scholar 

  13. V. Sharma, F. Böhm, M. Seitz, et al., Phys. Chem. Chem. Phys. 15, 8383 (2013). https://doi.org/10.1039/c3cp50865j

    Article  CAS  PubMed  Google Scholar 

  14. W. W. Rudolph and G. Irmer, Dalton Trans. 44, 295 (2015). https://doi.org/10.1039/C4DT03003F

    Article  CAS  PubMed  Google Scholar 

  15. W. W. Rudolph and G. Irmer, RSC Adv. 5, 84999 (2015). https://doi.org/10.1039/c5ra16900c

  16. S. Friesen, S. Krickl, M. Luger, et al., Phys. Chem. Chem. Phys. 20, 8812 (2018). https://doi.org/10.1039/C8CP00248G

    Article  CAS  PubMed  Google Scholar 

  17. S. Roy, A. Patra, S. Saha, et al., J. Phys. Chem. B 124, 8141 (2020). https://doi.org/10.1021/acs.jpcb.0c05681

    Article  CAS  PubMed  Google Scholar 

  18. P. R. Smirnov and O. V. Grechin, Russ. J. Phys. Chem. A 92, 79 (2018). https://doi.org/10.1134/S0036024418010259

    Article  CAS  Google Scholar 

  19. P. R. Smirnov and O. V. Grechin, Russ. Chem. Bull. Int. Ed. 67, 23 (2018).

    Article  CAS  Google Scholar 

  20. M. Antalek, E. Pace, B. Hedman, et al., J. Chem. Phys. 145, 044318 (2016). https://doi.org/10.1063/1.4959589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. A. Bankura, B. Santra, R. A. DiStasio, Jr., et al., Mol. Phys. 113, 2842 (2015). https://doi.org/10.1080/00268976.2015.1059959

    Article  CAS  Google Scholar 

  22. E. Pluhařová, H. E. Fischer, P. E. Mason, et al., Mol. Phys. 112, 1230 (2014). https://doi.org/10.1080/00268976.2013.875231

    Article  CAS  Google Scholar 

  23. R. M. Cordeiro, M. Yusupov, J. Razzokov, et al., J. Phys. Chem. B 124, 1082 (2020). https://doi.org/10.1021/acs.jpcb.9b08172

    Article  CAS  PubMed  Google Scholar 

  24. O. V. Grechin, P. R. Smirnov, and V. N. Trostin, Izv. Vissh. Ucheb. Zaved. Khim. Khim. Tekhnol. 56, 15 (2013).

    Google Scholar 

  25. G. Johansson and M. Sandström, Chem. Scripta 4, 195 (1973).

    CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-43-370001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Smirnov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, P.R., Grechin, O.V. & Vashurin, A.S. Ion Coordination in Aqueous Lanthanum Chloride and Lanthanum Nitrate Solutions as Probed by X-ray Diffraction. Russ. J. Inorg. Chem. 67, 382–387 (2022). https://doi.org/10.1134/S0036023622030111

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622030111

Keywords:

Navigation