Log in

ZnS Nanopowders and ZnS/Ag2S Heteronanostructures: Synthesis and Properties

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Zinc sulfide ZnS nanopowders were prepared by chemical deposition from aqueous solutions of zinc nitrate and sodium sulfide in the presence of sodium citrate or Trilon B. ZnS/Ag2S heteronanostructures were prepared by two-step chemical codeposition of zinc and silver sulfides. The prepared ZnS nanopowders had average particle sizes ranging from 2 to 10 nm depending on the reagent concentration ratio in the batch. The nanoparticle sizes in the thus-prepared heteronanostructures were 8–10 nm. The diffuse reflectance spectra of nanostructured ZnS and ZnS/Ag2S heteronanostructures were measured. The bandgap width Eg in the studied sulfide nanostructures was assessed based on an examination of the measured optical absorption spectra. As the nanoparticle size decreased from 10 to 2 nm, the Eg in ZnS nanopowders increased in the range 3.59–3.72 eV. The increasing Ag2S percentage in ZnS/Ag2S heteronanostructures leads to narrowing of the bandgap. Pulsed cathodoluminescence (PCL) spectra were recorded. The luminescence characteristics of ZnS and ZnS/Ag2S depend on the preparation method and nanoparticle morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. X. Fang, T. Zhai, U. K. Gautam, et al., Prog. Mater. Sci. 56, 175 (2011). https://doi.org/10.1016/j.pmatsci.2010.10.001

    Article  CAS  Google Scholar 

  2. X. Wang, H. Huang, B. Liang, et al., Crit. Rev. Solid State Mater. Sci. 38, 57 (2013). https://doi.org/10.1080/10408436.2012.736887

    Article  CAS  Google Scholar 

  3. C. Cui, X. Li, J. Liu, et al., Nanoscale Res. Lett. 10, 431 (2015). https://doi.org/10.1186/s11671-015-1125-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. I. Sadovnikov and A. I. Gusev, J. Mater. Chem. A 5, 17676 (2017). https://doi.org/10.1039/C7TA04949H

    Article  CAS  Google Scholar 

  5. S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Russ. Chem. Rev. 87, 303 (2018).

    Article  CAS  Google Scholar 

  6. S. I. Sadovnikov, A. A. Rempel, and A. I. Gusev, Nanostructured Lead, Cadmium and Silver Sulfides: Structure, Nonstoichiometry and Properties (Springer, Berlin/Heidelberg, 2018). https://doi.org/10.1007/978-3-319-56387-9

  7. S. I. Sadovnikov, Russ. Chem. Rev. 88, 571 (2019). https://doi.org/10.1070/RCR4867

    Article  CAS  Google Scholar 

  8. I. Kh. Avetisov, High-Purity Chemicals, Ed. by V. P. Zlomanov (Nauchniy Mir, Moscow, 2018) [in Russian].

    Google Scholar 

  9. X. Ma, J. Song, and Z. Yu, Thin Solid Films 519, 5043 (2011). https://doi.org/10.1016/j.tsf.2011.01.125

    Article  CAS  Google Scholar 

  10. W. P. Lim, Z. Zhang, H. Y. Low, and W. S. Chin, Angew. Chem., Int. Ed. Engl. 43, 5685 (2004). https://doi.org/10.1002/anie.200460566

    Article  CAS  Google Scholar 

  11. A. I. Kryukov, A. L. Stroyuk, N. N. Zin’chuk, et al., J. Mol. Catal. A: Chem. 221, 209 (2004). https://doi.org/10.1016/j.molcata.2004.07.009

    Article  CAS  Google Scholar 

  12. H. Li, F. **e, W. Li, et al., Catal. Surv. Asia 22 (3), 156 (2018). https://doi.org/10.1007/s10563-018-9249-2

    Article  CAS  Google Scholar 

  13. C. H. Liang, K. Terabe, T. Hasegawa, and M. Aono, Nanotecnology 18, 485202 (2007). https://doi.org/10.1088/0957-4484/18/48/485202

    Article  CAS  Google Scholar 

  14. T. V. Butkhuzi, T. G. Tchelidze, E. G. Chikoidze, and N. P. Kekelidze, Phys. Status Solidi B 229, 365 (2002). https://doi.org/10.1002/1521-3951(200201)229:1<365::AID-PSSB365>3.0.CO;2-G

    Article  CAS  Google Scholar 

  15. H. Zhang, B. Wei, L. Zhu, et al., Appl. Surf. Sci. 270, 133 (2013). https://doi.org/10.1016/j.apsusc.2012.12.140

    Article  CAS  Google Scholar 

  16. X. Yang, H. Xue, J. Xu, et al., ACS Appl. Mater. Interfaces 6, 9078 (2014). https://doi.org/10.1021/am5020953

    Article  CAS  PubMed  Google Scholar 

  17. R. G. Chaudhuri and S. Paria, J. Phys. Chem. C 117, 23385 (2013). https://doi.org/10.1021/jp408105m

    Article  CAS  Google Scholar 

  18. G. Murugadoss, R. Jayavel, M. R. Kumar, and R. Thangamuthu, Appl. Nanosci. 6, 503 (2016). https://doi.org/10.1007/s13204-015-0448-0

    Article  CAS  Google Scholar 

  19. R. Zamiri, H. A. Ahangar, D. M. Tobaldi, et al., Phys. Chem. Chem. Phys. 16, 22418 (2014). https://doi.org/10.1039/C4CP02945C

    Article  CAS  PubMed  Google Scholar 

  20. A. A. Isaeva and V. P. Smagin, Russ. J. Inorg. Chem. 64, 1199 (2019). https://doi.org/10.1134/S0036023619100061

    Article  CAS  Google Scholar 

  21. Yu. Yu. Lur’e, The Handbook of Analytical Chemistry (Khimiya, Moscow, 1967) [in Russian].

    Google Scholar 

  22. P. C. Lee and D. Meisel, J. Phys. Chem. 86, 3391 (1982). https://doi.org/10.1021/j100214a025

    Article  CAS  Google Scholar 

  23. S. I. Sadovnikov, A. I. Gusev, E. Yu. Gerasimov, and A. A. Rempel, Chem. Phys. Lett. 642, 17 (2015). https://doi.org/10.1016/j.cplett.2015.11.004

    Article  CAS  Google Scholar 

  24. S. I. Sadovnikov, A. I. Gusev, E. Yu. Gerasimov, and A. A. Rempel, Inorg. Mater. 52, 441 (2016). https://doi.org/10.1134/S0020168516050149

    Article  CAS  Google Scholar 

  25. S. I. Sadovnikov and A. I. Gusev, Eur. J. Inorg. Chem, No. 31, 4944 (2016). https://doi.org/10.1002/ejic.201600881

    Article  CAS  Google Scholar 

  26. Match! Version 1.10. Phase Identification from Powder Diffraction © 2003–2010 Crystal Impact.

  27. X’Pert HighScore Plus (PANalytical, Almedo, 2009), Version 2.2e (2.2.5).

  28. A. I. Gusev Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2009) [in Russian]. ISBN 978-5-9221-0582-8

    Google Scholar 

  29. JCPDS card No. 005-0566.

  30. S. I. Sadovnikov, A. I. Gusev, and A. A. Rempel, Phys. Chem. Chem. Phys. 17, 12466 (2015). https://doi.org/10.1039/C5CP00650C

    Article  CAS  PubMed  Google Scholar 

  31. S. I. Sadovnikov and A. I. Gusev, Russ. J. Gen. Chem. 84, 173 (2014).

    Article  CAS  Google Scholar 

  32. H. Peng, D. Liu, X. Zheng, and X. Fu, Nanomaterials 9, 1657 (2019). https://doi.org/10.3390/nano9121657

    Article  CAS  PubMed Central  Google Scholar 

  33. J. Tauc, Mater. Res. Bull. 3, 37 (1968). https://doi.org/10.1016/0025-5408(68)90023-8

    Article  CAS  Google Scholar 

  34. M. Cardona and G. Harbeke, Phys. Rev. A 137, A1467 (1965). https://doi.org/10.1103/PhysRev.137.A1467

    Article  Google Scholar 

  35. P. Kubelka and F. Munk, Z. Techn. Phys., No. 11a, 593(1931).

  36. N. Kaur, S. Kaur, J. Singh, and M. Rawat, J. Bioelectron. Nanotechnol. 1, 1 (2016).

    Google Scholar 

  37. T. T. Q. Hoa, L. V. Vu, L. V. Canh, and N. N. Long, J. Phys.: Conf. Ser. 187, 012081 (2009). https://doi.org/10.1088/1742-6596/187/1/012081

    Article  CAS  Google Scholar 

  38. M. Saleh, K. G. Lynn, L. G. Jacobsohn, and J. S. McCloy, J. Appl. Phys. 125, 075702 (2019). https://doi.org/10.1063/1.5084738

    Article  CAS  Google Scholar 

  39. T. V. Samofalova, V. N. Semenov, V. G. Klyuev, et al., Zh. Prikl. Spektrosk. 81, 88 (2014). T. 81. № 1. S. 88.

  40. R. Sahraei, F. Mohammadi, E. Soheyli, and M. Roushani, J. Lumin. 187, 421 (2017). https://doi.org/10.1016/j.jlumin.2017.03.020

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Scientific Fund (project no. 19-79-10101) at the Institute of Solid State Chemistry, Ural Branch of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Sadovnikov.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Additional information

Translated by O. Fedorova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadovnikov, S.I., Ishchenko, A.V. & Weinstein, I.A. ZnS Nanopowders and ZnS/Ag2S Heteronanostructures: Synthesis and Properties. Russ. J. Inorg. Chem. 65, 1312–1319 (2020). https://doi.org/10.1134/S0036023620090144

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620090144

Keywords:

Navigation