Log in

Influence of Environmental Factors and the Condition of Fish on Schooling Behavior

  • Published:
Journal of Ichthyology Aims and scope Submit manuscript

Abstract

Despite being innate, schooling behavior is subject to the influence of external factors that change the condition of fish or the conditions of their environment and reception. Of the abiotic factors, the strongest influence is exerted by the illumination and the water turbidity, the abundance of visual landmarks, and the flow velocity. The effect of temperature and the gas composition of water (oxygen content) is much less pronounced; only the first information is available about the effect of water salinity. Among biotic factors, schooling behavior is significantly influenced by various social conditions (fish stocking density, social deprivation), feeding and defensive motivations of fish (fish gut fullness, presence of predators), and parasite infestation. The ability of fish to exhibit schooling behavior is reduced in the presence of virtually all pollutants studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Abe, T., Sekiguchi, K., Onishi, H., et al., Observations on a school of ocean sunfish and evidence for a symbiotic cleaning association with albatrosses, Mar. Biol., 2012, vol. 159, no. 5, pp. 1173–1176. https://doi.org/10.1007/s00227-011-1873-6

    Article  Google Scholar 

  2. Barber, I. and Huntigford, F.A., Parasite infection alters schooling behavior: Deviant positioning of helminth-infected minnows in conspecific groups, Proc. R. Soc. Lond. B., 1996, vol. 263, no. 1374, pp. 1095–1102. https://doi.org/10.1098/rspb.1996.0161

    Article  Google Scholar 

  3. Barber, I., Huntingford, F.A., and Crompton, D.W.T., The effect of hunger and cestode parasitism on the shoaling decisions of small freshwater fish, J. Fish. Biol., 1995, vol. 47, no. 3, pp. 524–536. https://doi.org/10.1111/j.1095-8649.1995.tb01919.x

    Article  Google Scholar 

  4. Barber, I., Hoare, D., and Krause, J., Effects of parasites on fish behaviour: A review and evolutionary perspective, Rev. Fish Biol. Fish., 2000, vol. 10, no. 2, pp. 131–165. https://doi.org/10.1023/A:1016658224470

    Article  Google Scholar 

  5. Booman, C., Folkvord, A., and Hunter, J.R., Responsiveness of starved northern anchovy Engraulis mordax larvae to predatory attacks by adult anchovy, Fish. Bull., 1991, vol. 89, no. 4, pp. 707–711.

    Google Scholar 

  6. Borner, K.K., Krause, S., Mehner, T., et al., Turbidity affects social dynamics in Trinidadian guppies, Behav. Ecol. Sociobiol., 2015, vol. 69, no. 4, pp. 645–651. https://doi.org/10.1007/s00265-015-1875-3

    Article  Google Scholar 

  7. Breder, C.M., Studies on social grou**s in fishes, Bull. AMNH, 1959, vol. 117, Article 6. P. 393–482.

  8. Brown, M.E., The growth of brown trout (Salmo trutta Linn.). I. Factors influencing the growth of trout fry, J. Exp. Biol., 1946, vol. 22, nos. 3–4, pp. 118–129. https://doi.org/10.1242/jeb.22.3-4.118

    Article  CAS  PubMed  Google Scholar 

  9. Budaev, S.V. and Dzerzhinskii, K.F., Influence of water turbidity on the elements of group behavior of the Buenos Aires tetra Hemigrammus caudovittatus, in Povedenie i raspredelenie ryb (Behavior and Distribution of Fishes), Moscow: Inst. Evol. Morfol. Ekol. Zhivotnykh Akad. Nauk SSSR, 1992, pp. 132–144.

  10. Coss, R.G. and Burgess, J.W., Jewel fish retain juvenile schooling pattern after crowded development, Dev. Psychobiol., 1981, vol. 14, no. 5, pp. 451–457. https://doi.org/10.1002/dev.420140507

    Article  CAS  PubMed  Google Scholar 

  11. Cyrus, D.P. and Blader, S.J.M., The influence of turbidity on juvenile marine fishes in estuaries. Part 2. Laboratory studies, comparisons with field data and conclusions, J. Exp. Mar. Biol. Ecol., 1987, vol. 109, no. 1, pp. 71–91. https://doi.org/10.1016/0022-0981(87)90186-9

    Article  Google Scholar 

  12. Davis, M.W. and Olla, B.L., The role of visual cues in the facilitation of growth in a schooling fish, Environ. Biol. Fish., 1992, vol. 34, no. 4, pp. 421–424. https://doi.org/10.1007/BF00004746

    Article  Google Scholar 

  13. Demandt, N., Praetz, M., Kurvers, R.H.J.M., et al., Parasite infection disrupts escape behaviours in fish shoals, Proc. R. Soc. B., 2020, vol. 287, no. 1938, Article 20201158. https://doi.org/10.1098/rspb.2020.1158

  14. Dempster, T., Temporal variability of pelagic fish assemblages around fish aggregation devices: Biological and physical influences, J. Fish. Biol., 2005, vol. 66, no. 5, pp. 1237–1260. https://doi.org/10.1111/j.0022-1112.2005.00674.x

    Article  Google Scholar 

  15. Disler, N.N., Organy chuvstv sistemy bokovoi linii i ikh znachenie v povedenii ryb (Sensory Organs of the Lateral Line System and Their Significance in the Behavior of Fish), Moscow: Akad. Nauk SSSR, 1960.

  16. Dlugos, C.A. and Rabin, R.A., Ethanol effects on three strains of zebrafish: A model system for genetic investigations, Pharmacol. Biochem. Behav., 2003, vol. 74, no. 2, pp. 471–480. https://doi.org/10.1016/S0091-3057(02)01026-2

    Article  CAS  PubMed  Google Scholar 

  17. Dmitrieva, E.N., Stages of development of the nonmigratory bream, Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1960, no. 28, pp. 41–78.

  18. Domenici, P., Steffensen, J.F., and Batty, R.S., The effect of progressive hypoxia on swimming activity and schooling in Atlantic herring, J. Fish. Biol., 2000, vol. 57, no. 6, pp. 1526–1538. https://doi.org/10.1111/j.1095-8649.2000.tb02229.x

    Article  Google Scholar 

  19. Domenici, P., Ferrari, R.S., Steffensen, J.F., and Batty, R.S., The effects of progressive hypoxia on school structure and dynamics in Atlantic herring Clupea harengus, Proc. R. Soc. Lond. B., 2002, vol. 269, no. 1505, pp. 2103–2111. https://doi.org/10.1098/rspb.2002.2107

    Article  Google Scholar 

  20. Domenici, P., Lefrançois, C., and Shingles, A., Hypoxia and the antipredator behaviours of fishes, Phil. Trans. R. Soc. London B., 2007, vol. 362, no. 1487, pp. 2105–2121. https://doi.org/10.1098/rstb.2007.2103

    Article  CAS  Google Scholar 

  21. Echevarria, D.J., Toms, C.N., and Jouandot, D.J., Alcohol-induced behavior change in zebrafish models, Rev. Neurosci., 2011, vol. 22, no. 1, pp. 85–93. https://doi.org/10.1515/RNS.2011.010

    Article  CAS  PubMed  Google Scholar 

  22. Eggers, D.M., Theoretical effect of schooling by planktivorous fish predators on rate of prey consumption, J. Fish. Res. Board Can., 1976, vol. 33, no. 9, pp. 1964–1971. https://doi.org/10.1139/f76-250

    Article  Google Scholar 

  23. Eremeeva, E.F., Stages of development of bream in the Rybinsk Reservoir, Tr. Inst. Morfol. Zhivotnykh Akad. Nauk SSSR, 1960, no. 28, pp. 79–106.

  24. Felipe, T.R.A., Súarez, Y.R., and Antonialli, W.F., The social organization of fish schools: antipredator responses of Moenkhausia sanctaefilomenae (Characidae, Tetragonopterinae) under simulated predation in the laboratory, Sociobiology, 2009, vol. 54, no. 1, pp. 275–281.

    Google Scholar 

  25. Fernandes, Y. and Gerlai, R., Long-term behavioral changes in responses to early developmental exposure to ethanol in zebrafish, Alcohol. Clin. Exp. Res., 2009, vol. 33, no. 4, pp. 601–609. https://doi.org/10.1111/j.1530-0277.2008.00874.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fischer, S. and Frommen, J.G., Eutrophication alters social preferences in three-spined sticklebacks (Gasterosteus aculeatus), Behav. Ecol. Sociobiol., 2012, vol. 67, no. 2, pp. 293–299. https://doi.org/10.1007/s00265-012-1449-6

    Article  Google Scholar 

  27. Fitzsimmons, S.D. and Warburton, K., Fish movement behaviour: Variability within and between groups, Behav. Processes, 1992, vol. 26, nos. 2–3, pp. 211–216. https://doi.org/10.1016/0376-6357(92)90015-6

    Article  CAS  PubMed  Google Scholar 

  28. Galhardo, L. and Oliveira, R.F., The effects of social isolation on steroid hormone levels are modulated by previous social status and context in a cichlid fish, Horm. Behav., 2014, vol. 65, no. 1, pp. 1–5. https://doi.org/10.1016/j.yhbeh.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  29. Gerasimov, V.V., Feeding behavior of the Murmansk herring in and out of the school under aquatic conditions, Tr. Murmansk. Morsk. Biol. Inst. Akad. Nauk SSSR, 1962, no. 4, pp. 254–259.

  30. Gerasimov, V.V., Ekologo-fiziologicheskie zakonomernosti stainogo povedeniya ryb (Ecological and Physiological Patterns of Schooling Behavior of Fish) Moscow: Nauka, 1983.

  31. Gerlai, R., Lahav, M., Guo, S., and Rosenthal, A., Drinks like a fish: Zebra fish (Danio rerio) as a behavior genetic model to study alcohol effects, Pharmacol. Biochem. Behav., 2000, vol. 67, no. 4, pp. 773–782. https://doi.org/10.1016/S0091-3057(00)00422-6

    Article  CAS  PubMed  Google Scholar 

  32. Gerlotto, F. and Fréon, P., Some elements on vertical avoidance of fish schools to a vessel during acoustic surveys, Fish. Res., 1992, vol. 14, no. 4, pp. 251–259. https://doi.org/10.1016/0165-7836(92)90035-R

    Article  Google Scholar 

  33. Girsa, I.I., Alteration in the behavior and vertical distribution of certain juvenile Cyprinids in relation to illumination intensity and the presence of a predator, J. Ichthyol., 1973, vol. 13, no. 3, pp. 449–454.

    Google Scholar 

  34. Girsa, I.I. and Lapin, Yu.E., Rhythmic behavior of some fish in the Kandalaksha Bay of the White Sea, Biol. Morya, 1985, no. 5, pp. 55–57.

  35. Handegard, N.O., Michalsen, K., and Tjøstheim, D., Avoidance behavior in cod (Gadus morhua) to a bottom-trawling vessel, Aquat. Living Resour., 2003, vol. 16, no. 3, pp. 265–270. https://doi.org/10.1016/S0990-7440(03)00020-2

    Article  Google Scholar 

  36. Handegard, N.O., Tenningen, M., Howarth, K., et al., Effects on schooling function in mackerel of sub-lethal capture related stressors: Crowding and hypoxia, PLOS ONE, 2017, vol. 12, no. 12, Article e0190259. https://doi.org/10.1371/journal.pone.0190259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hansen, M.J., Schaerf, T.M., Krause, J., and Ward, A.J.W., Crimson spotted rainbowfish (Melanotaenia duboulayi) change their spatial position according to nutritional requirement, PLOS ONE, 2016, vol. 11, no. 2, Article e0148334. https://doi.org/10.1371/journal.pone.0148334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Helfman, G.S., Twilling activities of yellow perch, Perca flavescens, J. Fish. Res. Board Can., 1979, vol. 36, no. 2, pp. 173–179. https://doi.org/10.1139/f79-027

    Article  Google Scholar 

  39. Higgs, D.M. and Fuiman, L.A., Light intensity and schooling behaviour in larval gulf menhaden, J. Fish. Biol., 1996, vol. 48, no. 5, pp. 979–991. https://doi.org/10.1111/j.1095-8649.1996.tb01491.x

    Article  Google Scholar 

  40. Hockley, F.A., Wilson, C.A.M.E., Graham, N., and Cable, J., Combined effects of flow condition and parasitism on shoaling behaviour of female guppies Poecilia reticulata, Behav. Ecol Sociobiol., 2014, vol. 68, no. 9, pp. 1513–1520. https://doi.org/10.1007/s00265-014-1760-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hunter, J. and Nicholl, R., Visual threshold for schooling in northern anchovy Engraulis mordax, Fish. Bull., 1985, vol. 83, no. 3, pp. 235–242.

    Google Scholar 

  42. Inoue, M., Arimoto, T., and Kono, I., Degree of dispersion of the Zaco temmincki school to water quality in a streaming water trough, Bull. Jpn. Soc. Sci. Fish., 1979a, vol. 45, no. 12, pp. 1485–1490. https://doi.org/10.2331/suisan.45.1485

    Article  Google Scholar 

  43. Inoue, M., Hasegawa, E., and Arimoto, T., A study on the structure of fish schools in Rhodeus ocellatus and Moroco steindachneri by the photographic observation, La mer, 1979b, vol. 17, no. 2, pp. 91–103.

    Google Scholar 

  44. Itazawa, Y., Matsumoto, T., and Kanda, T., Group effects on physiological and ecological phenomena in fish. I. Group effect on the oxygen consumption of the rainbow trout and the medaka, Bull. Jpn. Soc. Sci. Fish., 1978, vol. 44, no. 9, pp. 965–969. https://doi.org/10.2331/suisan.44.965

    Article  CAS  Google Scholar 

  45. Jobling, M., Physiological and social constraints on growth of fish with special reference to Arctic charr, Salvelinus alpinus L, Aquaculture, 1985, vol. 44, no. 2, pp. 83–90. https://doi.org/10.1016/0044-8486(85)90011-0

    Article  Google Scholar 

  46. Jobling, M. and Reinsnes, T.-G., Physiological and social constraints on growth of Arctic charr, Salvelinus alpinus L.: An investigation of factors leading to stunting, J. Fish. Biol., 1986, vol. 28, no. 3, pp. 379–384. https://doi.org/10.1111/j.1095-8649.1986.tb05174.x

    Article  Google Scholar 

  47. Kasumyan, A.O. and Ponomarev, V.Y., Study of the behavior of zebrafish, Brachydanio rerio, in response to natural chemical food stimuli, J. Ichthyol., 1986, vol. 26, no. 5, pp. 96–105.

    Google Scholar 

  48. Keenleyside, M.H.A., Some aspects of the schooling behaviour of fish, Behaviour, 1955, vol. 8, no. 1, pp. 183–247. https://doi.org/10.1163/156853955X00229

    Article  Google Scholar 

  49. Kimbell, H.S. and Morrell, L.J., Turbidity influences individual and group level responses to predation in guppies, Poecilia reticulata, Anim. Behav., 2015, vol. 103, pp. 179–185. https://doi.org/10.1016/j.anbehav.2015.02.027

    Article  Google Scholar 

  50. Kimbell, H.S. and Morrell, L.J., Turbidity weakens selection for assortment in body size in groups, Behav. Ecol., 2016, vol. 27, no. 2, pp. 545–552. https://doi.org/10.1093/beheco/arv183

    Article  Google Scholar 

  51. Koebele, B.P., Growth and the size hierarchy effect: An experimental assessment of three proposed mechanisms; activity differences, disproportional food acquisition, physiological stress, Environ. Biol. Fish., 1985, vol. 12, no. 3, pp. 181–188. https://doi.org/10.1007/BF00005149

    Article  Google Scholar 

  52. Kohler, D., Experimente zum Schwarmverhalten des Uklei, Aquarien-Terrarien, 1988, vol. 35, no. 7, pp. 239–243.

    Google Scholar 

  53. Koltes, K.H., Effects of sublethal copper concentrations on the structure and activity of Atlantic silverside schools, Trans. Am. Fish. Soc., 1985, vol. 114, no. 3, pp. 413–422. https://doi.org/10.1577/1548-8659(1985)114%3C413:EOSCCO%3E2.0.CO;2

    Article  CAS  Google Scholar 

  54. Komarova, T.I., Formation of the parasite fauna of larvae and fry of some fish of the Kremenchug Reservoir, Gidrobiol. Zh., 1976, vol. 12, no. 1, pp. 85–90.

    Google Scholar 

  55. Kozak, G.M. and Boughman, J.W., Plastic responses to parents and predators lead to divergent shoaling behaviour in sticklebacks, J. Evol. Biol., 2012, vol. 25, no. 4, pp. 759–769. https://doi.org/10.1111/j.1420-9101.2012.02471.x

    Article  PubMed  Google Scholar 

  56. Kramer, D.L. and Graham, J.B., Synchronous air breathing, a social component of respiration in fishes, Copeia, 1976, vol. 1976, no. 4, pp. 689–697. https://doi.org/10.2307/1443450

    Article  Google Scholar 

  57. Krause, J., The influence of hunger on shoal size choice by three-spined sticklebacks, Gasterosteus aculeatus, J. Fish. Biol., 1993a, vol. 43, no. 5, pp. 775–780. https://doi.org/10.1111/j.1095-8649.1993.tb01154.x

    Article  Google Scholar 

  58. Krause, J., The relationship between foraging and shoal position in a mixed shoal of roach (Rutilus rutilus) and chub (Leuciscus cephalus): A field study, Oecologia, 1993b, vol. 93, no. 3, pp. 356–359. https://doi.org/10.1007/BF00317878

    Article  PubMed  Google Scholar 

  59. Krause, J. and Godin, J.-G.J., Influence of parasitism on the shoaling behaviour of banded killifish, Fundulus diaphanus, Can. J. Zool., 1994, vol. 72, no. 10, pp. 1775–1779. https://doi.org/10.1139/z94-240

    Article  Google Scholar 

  60. Krause, J., Bumann, D., and Todt, D., Relationship between the position preference and nutritional state of individuals in shoals of juvenile roach (Rutilus rutilus), Behav. Ecol. Sociobiol., 1992, vol. 30, nos. 3–4, pp. 177–180. https://doi.org/10.1007/BF00166700

    Article  Google Scholar 

  61. Krause, J., Hartmann, N., and Pritchard, V.L., The influence of nutritional state on shoal choice in zebrafish, Danio rerio, Anim. Behav., 1999, vol. 57, no. 4, pp. 771–775. https://doi.org/10.1006/anbe.1998.1010

    Article  CAS  PubMed  Google Scholar 

  62. Lebedeva, N.E., Kasumyan, A.O., and Golovkina, T.V., The correction of the physiological status of carp Cyprinus carpio by natural chemical signals, J. Ichthyol., 2000, vol. 40, no. 3, pp. 258–265.

    Google Scholar 

  63. Lefranҫois, C., Ferrari, R.C., Moreira da Silva, J., and Domenici P., The effect of progressive hypoxia on spontaneous activity in single and shoaling golden grey mullet Liza aurata, J. Fish. Biol., 2009, vol. 75, no. 7, pp. 1615–1625. https://doi.org/10.1111/j.1095-8649.2009.02387.x

    Article  Google Scholar 

  64. Leite, T., Branco, P., Ferreira, M.T., and Santos, J.M., Activity, boldness and schooling in freshwater fish are affected by river salinization, Sci. Total Environ., 2022, vol. 819, Article 153046. https://doi.org/10.1016/j.scitotenv.2022.153046

    Article  CAS  PubMed  Google Scholar 

  65. Leshcheva, T.S. and Zhuikov, A.Yu., Obuchenie ryb (Fish Learning), Moscow: Nauka, 1989.

  66. Luyten, P.H. and Liley, N.R., Geographic variation in the sexual behaviour of the guppy, Poecilia reticulata (Peters), Behaviour, 1985, vol. 95, nos. 1–2, pp. 164–179. https://doi.org/10.1163/156853985X00109

    Article  Google Scholar 

  67. Magurran, A.E., The adaptive significance of schooling as an anti-predator defence in fish, Ann. Zool. Fenn., 1990, vol. 27, no. 2, pp. 51–66.

    Google Scholar 

  68. Magurran, A.E. and Bendelow, J.A., Conflict and co-operation in White Cloud Mountain minnow schools, J. Fish. Biol., 1990, vol. 37, no. 1, pp. 77–83. https://doi.org/10.1111/j.1095-8649.1990.tb05929.x

    Article  Google Scholar 

  69. Magurran, A.E. and Pitcher, T.J., Provenance, shoal size and the sociobiology of predator-evasion behaviour in minnow shoals, Proc. R. Soc. Lond. B., 1987, vol. 229, no. 1257, pp. 439–465. https://doi.org/10.1098/rspb.1987.0004

    Article  Google Scholar 

  70. Magurran, A.E. and Seghers, B.H., Population differences in the schooling behaviour of newborn guppies, Poecilia reticulata, Ethology, 1990, vol. 84, no. 4, pp. 334–342. https://doi.org/10.1111/j.1439-0310.1990.tb00807.x

    Article  Google Scholar 

  71. Malyukina, G.A., Some issues of the physiology of the schooling behavior of fish, Tr. VNIRO, 1966, vol. 60, pp. 201–213.

    Google Scholar 

  72. Manteifel’, B.P., Girsa, I.I., Leshcheva, T.S., and Pavlov, D.S., Influence of changing illumination on the formation and breakup of schools in fish, in Pitanie khishchnykh ryb i ikh vzaimootnosheniya s kormovymi organizmami (Nutrition of Predatory Fish and Their Relationship with Forage Organisms), Moscow: Nauka, 1965a, pp. 83–90.

  73. Manteifel’, B.P., Girsa, I.I., Leshcheva, T.S., and Pavlov, D.S., Diurnal rhythms of nutrition and motor activity of some freshwater predatory fish, in Pitanie khishchnykh ryb i ikh vzaimootnosheniya s kormovymi organizmami (Nutrition of Predatory Fish and Their Relationship with Forage Organisms), Moscow: Nauka, 1965b, pp. 3–81.

  74. McCartt, A.L., Lynch, W.E.Jr., and Johnson, D.L., How light, a predator, and experience influence bluegill use of shade and schooling, Environ. Biol. Fish., 1997, vol. 49, no. 1, pp. 79–87. https://doi.org/10.1023/A:1007353314602

    Article  Google Scholar 

  75. McFarland, W.N. and Moss, S.A., Internal behavior in fish schools, Science, 1967, vol. 156, no. 3772, pp. 260–262. https://doi.org/10.1126/science.156.3772.260

    Article  CAS  PubMed  Google Scholar 

  76. McNicol, R.E., Scherer, E., and Gree, J.H., Shoaling enhances cadmium avoidance by lake whitefish, Coregonus clupeaformis, Environ. Biol. Fish., 1996, vol. 47, no. 3, pp. 311–319. https://doi.org/10.1007/BF00000503

    Article  Google Scholar 

  77. Middlemiss, K.L., Cook, D.G., Jerrett, A.R., and Davison, W., Effects of group size on school structure and behaviour in yellow-eyed mullet Aldrichetta forsteri, J. Fish. Biol., 2018, vol. 92, no. 5, pp. 1255–1272. https://doi.org/10.1111/jfb.13581

    Article  CAS  PubMed  Google Scholar 

  78. Mikheev, V.N., Choice between individual and schooling behavior in fishes with a facultative social strategy, J. Ichthyol., 1995, vol. 35, no. 8.

  79. Mikheev, V.N., Neodnorodnost’ sredy i troficheskie otnosheniya u ryb (Heterogeneity of the Environment and Trophic Relationships in Fish), Moscow: Nauka, 2006.

  80. Miller, N., Greene, K., Dydinski, A., and Gerlai, R., Effects of nicotine and alcohol on zebrafish (Danio rerio) shoaling, Behav. Brain Res., 2013, vol. 240, no. 1, pp. 192–196. https://doi.org/10.1016/j.bbr.2012.11.033

    Article  CAS  PubMed  Google Scholar 

  81. Mochek, A.D., Etologicheskaya organizatsiya pribrezhnykh soobshchestv morskikh ryb (Ethological Organization of Coastal Marine Fish Communities), Moscow: Nauka, 1987.

  82. Mochek, A.D. and Val’des, E., Influence of relief on shoal behavior of fish, Vopr. Ikhtiol., 1982, vol. 22, no. 6, pp. 1042–1044.

    Google Scholar 

  83. Morgan, M.J., The effect of hunger, shoal size and the presence of a predator on shoal cohesiveness in bluntnose minnows, Pimephales notatus rafinesque, J. Fish. Biol., 1988, vol. 32, no. 6, pp. 963–971. https://doi.org/10.1111/j.1095-8649.1988.tb05439.x

    Article  Google Scholar 

  84. Morinaga, T., Kioke, T., Ooyomo, K., and Matsuike, K., Response of a fish school to turbid water, La mer, 1988, vol. 26, no. 1, pp. 19–28.

    Google Scholar 

  85. Moss, S.A. and McFarland, W.N., The influence of dissolved oxygen and carbon dioxide on fish schooling behavior, Mar. Biol., 1970, vol. 5, no. 2, pp. 100–107. https://doi.org/10.1007/BF00352592

    Article  Google Scholar 

  86. Nadler, L.E., Killen, S.S., McClure, E.C., et al., Shoaling reduces metabolic rate in a gregarious coral reef fish species, J. Exp. Biol., 2016, vol. 219, no. 18, pp. 2802–2805. https://doi.org/10.1242/jeb.139493

    Article  PubMed  PubMed Central  Google Scholar 

  87. Nakayama, K., Oshima, Y., Hiramatsu, K., et al., Effects of polychlorinated biphenyls on the schooling behavior of Japanese medaka (Oryzias latipes), Environ. Toxicol. Chem., 2005, vol. 24, no. 10, pp. 2588–2593. https://doi.org/10.1897/04-518r2.1

    Article  CAS  PubMed  Google Scholar 

  88. O’Connel, C.P., The interrelationship of biting and filter feeding activity of the northern anchovy (Engraulis mordax), J. Fish. Res. Board Can., 1972, vol. 29, no. 3, pp. 285–293. https://doi.org/10.1139/f72-047

    Article  Google Scholar 

  89. Ohata, R., Masuda, R., Takahashi, K., and Yamashita, Y., Moderate turbidity enhances schooling behaviour in fish larvae in coastal waters, ICES J. Mar. Sci., 2012, vol. 71, no. 4, pp. 925–929. https://doi.org/10.1093/icesjms/fss194

    Article  Google Scholar 

  90. Ososkov, I. and Weis, J.S., Development of social behavior in larval mummichogs after embryonic exposure to methylmercury, Trans. Am. Fish. Soc., 1996, vol. 125, no. 6, pp. 983–987. https://doi.org/10.1577/1548-8659(1996)125<0983:DOSBIL>2.3.CO;2

    Article  CAS  Google Scholar 

  91. Paijmans, K.C., Booth, D.J., and Wong, M.Y.L., Predation avoidance and foraging efficiency contribute to mixed-species shoaling by tropical and temperate fishes, J. Fish. Biol., 2020, vol. 96, no. 3, pp. 806–814. https://doi.org/10.1111/jfb.14277

    Article  PubMed  Google Scholar 

  92. Parin, N.V., Assessment of the abundance of flying fishes by visual observations, Biol. Oceanogr., 1983, vol. 2, nos. 2–4, pp. 341–355. https://www.tandfonline.com/doi/pdf/10.1080/01965581.1983.10749465?needAccess=true

    Google Scholar 

  93. Parker, F.R., Reduced metabolic rates in fishes as a result of induced schooling, Trans. Am. Fish. Soc., 1973, vol. 102, no. 1, pp. 125–131. https://doi.org/10.1577/1548-8659(1973)102<125:RMRIFA>2.0.CO;2

    Article  Google Scholar 

  94. Pavlov, D.S. and Kasumyan, A.O., The structure of the feeding behavior of fishes, J. Ichthyol., 1998, vol. 38, no. 1, pp. 116–128.

    Google Scholar 

  95. Pavlov, D.S. and Gorin, A.N., The use of locomotor indicators of rheoreaction to assess fish as a tagging method, Vopr. Ikhtiol., 1985, vol. 27, no. 5, pp. 863–867.

    Google Scholar 

  96. Pavlov, D.S., Mikheev, V.N., Vasilev, M.V., and Pekhlivanov, L.Z., Pitanie, raspredelenie i migratsiya molodi ryb iz vodokhranilishcha “Aleksandr Stamboliiskii” (Nutrition, distribution and migration of juvenile fish from the Aleksandar Stamboliyski reservoir), Moscow: Nauka, 1988.

  97. Pilakouta, N., O’Donnell, P.J., Crespel, A., et al., A warmer environment can reduce sociability in an ectotherm, Glob. Chang. Biol., 2023, vol. 29, no. 1, pp. 206–214. https://doi.org/10.1111/gcb.16451

    Article  CAS  PubMed  Google Scholar 

  98. Pitcher, T.J. and Parrish, B.L., Functions of shoaling behavior in teleosts, in Behaviour of Teleost Fishes, London: Chapman and Hall, 1993, pp. 262–439.

    Book  Google Scholar 

  99. Poulin, R., Group-living and the richness of the parasite fauna in Canadian freshwater fishes, Oecologia, 1991, vol. 86, no. 3, pp. 390–394. https://doi.org/10.1007/BF00317606

    Article  PubMed  Google Scholar 

  100. Radakov, D.V., Schooling in the Ecology of Fish, New York: John Wiley, 1973.

    Google Scholar 

  101. Radakov, D.V. and Mocheck, A.D., Mutual stimulation in schools of Pristella riddlei Meek and Rhodeus sericeus (Pallas), J. Ichthyol., 1972, vol. 12, no. 3, pp. 538–540.

    Google Scholar 

  102. Rangeley, R.W. and Kramer, D.L., Tidal effects on habitat selection and aggregation by juvenile pollock Pollachius virens in the rocky intertidal zone, Mar. Ecol. Proc. Ser. V, 1995, vol. 126, pp. 19–29. https://doi.org/10.3354/meps126019

    Article  Google Scholar 

  103. Ranta, E., Gregariousness versus solitude: Another look at parasite faunal richness in Canadian freshwater fishes, Oecologia, 1992, vol. 89, no. 1, pp. 150–152. https://doi.org/10.1007/BF00319028

    Article  PubMed  Google Scholar 

  104. Robinson, C.J. and Pitcher, T.J., The influence of hunger and ration level on shoal density, polarization and swimming speed of herring, Clupea harengus L, J. Fish. Biol., 1989, vol. 34, no. 4, pp. 631–633. https://doi.org/10.1111/j.1095-8649.1989.tb03341.x

    Article  Google Scholar 

  105. Rodriguez-Pinto, I.I., Rieucau, G., Handegard, N.O., and Boswell, K.M., Environmental context elicits behavioural modification of collective state in schooling fish, Anim. Behav., 2020, vol. 165, pp. 107–116. https://doi.org/10.1016/j.anbehav.2020.05.002

    Article  Google Scholar 

  106. Ross, R.M., Backman, T.W.H., and Limburg, K.E., Group-size-mediated metabolic rate reduction in American shad, Trans. Am. Fish. Soc., 1992, vol. 121, no. 3, pp. 385–390. https://doi.org/10.1577/1548-8659(1992)121%3C0385:N-GMRRI%3E2.3.CO;2

    Article  Google Scholar 

  107. Sarà, G., Dean, J.M., D’Amato, D., et al., Effect of boat noise on the behaviour of bluefin tuna Thunnus thynnus in the Mediterranean Sea, Mar. Ecol.: Proc. Ser. V, 2007, vol. 331, pp. 243–253. https://doi.org/10.3354/meps331243

    Article  Google Scholar 

  108. Seghers, B.H., Schooling behavior in the guppy (Poecilia reticulata): An evolutionary response to predation, Evolution, 1974, vol. 28, no. 3, pp. 486–489. https://doi.org/10.2307/2407174

    Article  PubMed  Google Scholar 

  109. Shelton, D.S., Shelton, S.G., Daniel, D.K., et al., Collective behavior in wild zebrafish, Zebrafish, 2020, vol. 17, no. 4, pp. 243–252. https://doi.org/10.1089/zeb.2019.1851

    Article  PubMed  PubMed Central  Google Scholar 

  110. Shlaifer, A., Studies in mass physiology: Effect of numbers upon the oxygen consumption and locomotor activity of Carassius auratus, Physiol. Zool., 1938, vol. 11, no. 4, pp. 408–424. https://doi.org/10.1086/physzool.11.4.30152652

    Article  Google Scholar 

  111. Soin, S.G., Kasumyan, A.O., and Pashchenko, N.I., Ecological and morphological analysis of the development of the minnow, Phoxinus phoxinus (Cyprinidae), J. Ichthyol., 1981, vol. 21, no. 4, pp. 90–105.

    Google Scholar 

  112. Vabø, R., Olsen, K., and Huse, I., The effect of vessel avoidance of wintering Norwegian spring-spawning herring, Fish. Res., 2002, vol. 58, no. 1, pp. 59–77. https://doi.org/10.1016/S0165-7836(01)00360-5

    Article  Google Scholar 

  113. Van Havre, N. and FitzGerald, G.J., Shoaling and kin recognition in the threespine stickleback (Gasterosteus aculeatus L.), Biol. Behav., 1988, vol. 13, no. 4, pp. 190–201.

    Google Scholar 

  114. Ward, A.J.W., Hoare, D.J., Couzin, I.D., et al., The effects of parasitism and body length on positioning within wild fish shoals, J. Anim. Ecol., 2002, vol. 71, no. 1, pp. 10–14. https://doi.org/10.1046/j.0021-8790.2001.00571.x

    Article  Google Scholar 

  115. Ward, A.J.W., Duff, A.J., Krause, J., and Barber, I., Shoaling behaviour of sticklebacks infected with the microsporidian parasite, Glugea anomala, Environ. Biol. Fish., 2005, vol. 72, no. 2, pp. 155–160. https://doi.org/10.1007/s10641-004-9078-1

    Article  Google Scholar 

  116. Ward, A.J.W., Duff, A.J., Horsfall, J.S., and Currie, S., Scents and scents-ability: Pollution disrupts chemical social recognition and shoaling in fish, Proc. R. Soc. B., 2008, vol. 275, no. 1630, pp. 101–105. https://doi.org/10.1098/rspb.2007.1283

    Article  PubMed  Google Scholar 

  117. Watanabe, Y. and Sato, K., Functional dorsoventral symmetry in relation to lift-based swimming in the ocean sunfish Mola mola, PLOS ONE, 2008, vol. 3, no. 10, Article e3446. https://doi.org/10.1371/journal.pone.0003446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Webber, H.M. and Haines, T.A., Mercury effects on predator avoidance behaviour of a forage fish, golden shiner (Notemigonus crysoleucas), Environ. Toxicol. Chem., 2003, vol. 22, no. 7, pp. 1556–1561. https://doi.org/10.1002/etc.5620220718

    Article  CAS  PubMed  Google Scholar 

  119. Weis, P. and Weis, J.S., DDT causes changes in activity and schooling behavior in goldfish, Environ. Res., 1974a, vol. 7, no. 1, pp. 68–74. https://doi.org/10.1016/0013-9351(74)90076-0

    Article  CAS  Google Scholar 

  120. Weis, P. and Weis, J.S., Schooling behavior of Menidia menidia in the presence of the insecticide Sevin (carbaryl), Mar. Biol., 1974b, vol. 28, no. 4, pp. 261–263. https://doi.org/10.1007/BF00388493

    Article  Google Scholar 

  121. Wibe, Å.E., Billing, A., Rosenqvist, G., and Jenssen, B.M., Butyl benzyl phthalate affects shoaling behavior and bottom-dwelling behavior in threespine stickleback, Environ. Res., 2002, vol. 89, no. 2, pp. 180–187. https://doi.org/10.1006/enrs.2002.4360

    Article  CAS  PubMed  Google Scholar 

  122. Williams, G.C., Measurements of consociation among fishes and comments on the evolution of schooling, Publ. Mich. State Univ. Mus. Biol. Ser., 1964, vol. 2, no. 7, pp. 349–384.

  123. Williams, M., Rearing environments and their effects on schooling of fishes, Pubbl. Staz. Zool. Napoli, 1976, vol. 40, pp. 238–254.

    Google Scholar 

  124. Wilson, A.D.M., Burns, A.L.J., Crosato, E., et al., Conformity in the collective: Differences in hunger affect individual and group behavior in a shoaling fish, Behav. Ecol., 2019, vol. 30, no. 4, pp. 968–974. https://doi.org/10.1093/beheco/arz036

    Article  Google Scholar 

  125. Wirtz, P., The influence of the sight of a conspecific on the growth of Blennius pholis (Pisces Teleostei), J. Comp. Physiol., 1974, vol. 91, no. 2, pp. 161–165. https://doi.org/10.1007/BF00694271

    Article  Google Scholar 

  126. Wirtz, P. and Davenport, J., Increased oxygen consumption in blennies (Blennius pholis L.) exposed to their mirror images, J. Fish. Biol., 1976, vol. 9, no. 1, pp. 67–74. https://doi.org/10.1111/j.1095-8649.1976.tb04662.x

    Article  Google Scholar 

  127. Zheng, Y.-H. and Fu, S.-J., Effects of fasting on collective movement and fission-fusion dynamics in both homogeneous and heterogeneous shoals of a group-living cyprinid fish species, J. Fish. Biol., 2021, vol. 99, no. 5, pp. 1640–1649. https://doi.org/10.1111/jfb.14872

    Article  PubMed  Google Scholar 

  128. Zuev, G.V., Nikol’skii, V.N., and Ovcharov, O.P., Otsenka zapasov ryb i kal’marov (Assessment of Fish and Squid Stocks), Moscow: Agropromizdat, 1988.

Download references

ACKNOWLEDGMENTS

The authors express their sincere gratitude to A.A. Kazhlaev, A.S. Patseva, and L.S. Alekseeva (Moscow State University), who provided great assistance in preparing the article for publication. The authors are sincerely grateful to P.I. Kirillov (Institute of Ecology and Evolution, Russian Academy of Sciences) for careful and constructive editing of the text and illustrations, which improved the quality of the article.

Funding

The article was prepared within the framework of scientific projects of the state assignment of the Moscow State University No. 121032300100-5 and the Institute of Ecology and Evolution, Russian Academy of Sciences No. 121122300056-3 in the Unified State Information System for Accounting the Results of Civil Research, Development and Technological Works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Kasumyan.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

CONFLICT OF INTEREST

The author of this work declares that he has no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasumyan, A.O., Pavlov, D.S. Influence of Environmental Factors and the Condition of Fish on Schooling Behavior. J. Ichthyol. 63, 1362–1373 (2023). https://doi.org/10.1134/S0032945223070123

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0032945223070123

Keywords:

Navigation