Log in

Magnetocaloric Effect in Rare-Earth Magnets

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The paper presents a comparative study of the magnetocaloric characteristics of rare-earth magnets. Both hydrogen containing systems Gd–H, (Gd,R)Ni–H (R is a rare-earth metal) and RCo2–H with a Laves phase structure and systems without hydrogen, such as layered magnets with the general formula RTX (T = Mn, Fe, Co; X = Si), are studied, as well as compounds of the type R2(Fe,T)17 (T = Al), which have a magnetic compensation point and exhibit an alternating magnetocaloric effect (MCE). The MCE was measured directly and indirectly from the analysis of the field dependences of magnetization. The main regularities and specific features of the formation of magnetocaloric properties of materials depending on their composition and structure have been revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. A. S. Andreenko, K. P. Belov, S. A. Nikitin, and A. M. Tishin, “Magnetocaloric effects in rare-earth magnetic materials,” Sov. Phys. Usp. 32, 649 (1989). https://doi.org/10.1070/PU1989v032n08ABEH002745

    Article  Google Scholar 

  2. K. P. Belov, Magnetothermal Phenomena in Rare-Earth Magnetics (Nauka, Moscow, 1990).

    Google Scholar 

  3. S. A. Nikitin, Magnetic Properties of Rare-Earth Metals and Their Alloys (Mosk. Gos. Univ., Moscow, 1989).

    Google Scholar 

  4. A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (Institute of Physics Publishing Ltd, 2003).

    Book  Google Scholar 

  5. V. V. Sokolovskiy, O. N. Miroshkina, V. D. Buchelnikov, and V. V. Marchenkov, “Magnetocaloric effect in metals and alloys,” Phys. Met. Metallogr. 123, 315–318 (2022). https://doi.org/10.1134/s0031918x2204010x

    Article  CAS  Google Scholar 

  6. V. V. Sokolovskiy, O. N. Miroshkina, and V. D. Buchelnikov, “Review of modern theoretical approaches for study of magnetocaloric materials,” Phys. Met. Metallogr. 123, 319–374 (2022). https://doi.org/10.1134/S0031918X22040111

    Article  CAS  Google Scholar 

  7. A. A. Inishev, E. G. Gerasimov, P. B. Terent’ev, V. S. Gaviko, and N. V. Mushnikov, “The magnetocaloric effect of nonstoichiometric ErM2Mnx compounds (with M = Ni, Co, and Fe),” Phys. Met. Metallogr. 123, 869–873 (2022). https://doi.org/10.1134/s0031918x22090046

    Article  CAS  Google Scholar 

  8. G. S. Burkhanov, N. B. Kolchugina, E. A. Tereshina, I. S. Tereshina, G. A. Politova, V. B. Chzhan, D. Badurski, O. D. Chistyakov, M. Paukov, H. Drulis, and L. Havela, “Magnetocaloric properties of distilled gadolinium: Effects of structural inhomogeneity and hydrogen impurity,” Appl. Phys. Lett. 104, 242402–242407 (2014). https://doi.org/10.1063/1.4883744

    Article  CAS  Google Scholar 

  9. V. B. Chzhan, A. A. Kurganskaya, I. S. Tereshina, A. Yu. Karpenkov, I. A. Ovchenkova, E. A. Tereshina-Chitrova, A. V. Andreev, D. I. Gorbunov, S. A. Lushnikov, and V. N. Verbetsky, “Influence of interstitial and substitutional atoms on magnetocaloric effects in RNi compounds,” Mater. Chem. Phys. 264, 124455 (2021). https://doi.org/10.1016/j.matchemphys.2021.124455

    Article  CAS  Google Scholar 

  10. I. S. Tereshina, I. A. Ovchenkova, G. A. Politova, and N. Yu. Pankratov, “Materials based on RCo2 and RMnSi for solid-state magnetic cooling,” Bull. Russ. Acad. Sci.: Phys. 87, 304–309 (2023). https://doi.org/10.3103/s1062873822701131

    Article  CAS  Google Scholar 

  11. S. A. Nikitin, T. I. Ivanova, and I. A. Tskhadadze, “Magnetic properties of GdMnxFe1–xSi intermetallic compounds,” Acta Phys. Pol. A 91, 463–466 (1997). https://doi.org/10.12693/aphyspola.91.463

    Article  CAS  Google Scholar 

  12. N. Yu. Pankratov, T. P. Kaminskaya, I. S. Tereshina, A. A. Makurenkova, A. Yu. Karpenkov, M. A. Paukov, and S. A. Nikitin, “Magnetic properties and surface morphology of the intermetallic compound Dy2Fe10Al7 and its hydride,” Phys. Solid State 62, 808–814 (2020). https://doi.org/10.1134/s1063783420050224

    Article  CAS  Google Scholar 

  13. K. A. Gschneidnerjr, V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68, 1479–1539 (2005). https://doi.org/10.1088/0034-4885/68/6/r04

    Article  Google Scholar 

  14. S. V. Vonsovskii, Magnetism (Nauka, Moscow, 1971).

    Google Scholar 

  15. M. P. Annaorazov, S. A. Nikitin, A. L. Tyurin, K. A. Asatryan, and A. Kh. Dovletov, “Anomalously high entropy change in FeRh alloy,” J. Appl. Phys. 79, 1689–1695 (1996). https://doi.org/10.1063/1.360955

    Article  CAS  Google Scholar 

  16. A. I. Smarzhevskaya, W. Iwasieczko, V. N. Verbetsky, and S. A. Nikitin, “New magnetocaloric material based on GdNiH3.2 hydride for application in cryogenic devices,” Phys. Status Solidi (c) 11, 1102–1105 (2014). https://doi.org/10.1002/pssc.201300728

    Article  CAS  Google Scholar 

  17. E. Gratz and A. S. Markosyan, “Physical properties of RCo2 Laves phases,” J. Phys.: Condens. Matter 13, R385–R413 (2001). https://doi.org/10.1088/0953-8984/13/23/202

    Article  CAS  Google Scholar 

  18. S. A. Nikitin, G. A. Tskhadadze, I. A. Ovchenkova, D. A. Zhukova, and T. I. Ivanova, “The magnetic phase transitions and magnetocaloric effect in the Ho(Co1 – xAlx)2 and Tb(Co1–xAlx)2 compounds,” Solid State Phenom. 168, 119–121 (2011). https://doi.org/10.4028/www.scientific.net/SSP.168-169.119

  19. I. A. Ovchenkova, G. A. Tskhadadze, D. A. Zhukova, T. I. Ivanova, and S. A. Nikitin, “Magnetocaloric effect in RCo2 compounds,” Solid State Phenom. 190, 339–342 (2012). https://doi.org/10.4028/www.scientific.net/ssp.190.339

  20. Yi. Zhuang, X. Chen, K. Zhou, K. Li, and C. Ma, “Phase structure and magnetocaloric effect of (Tb1 ‒ xDyx)Co2 alloys,” J. Rare Earths 26, 749–752 (2008). https://doi.org/10.1016/s1002-0721(08)60176-3

    Article  Google Scholar 

  21. M. Halder, S. M. Yusuf, M. D. Mukadam, and K. Shashikala, “Magnetocaloric effect and critical behavior near the paramagnetic to ferrimagnetic phase transition temperature in TbCo2 – xFex,” Phys. Rev. B 81 (2010). https://doi.org/10.1103/physrevb.81.174402

  22. N. V. Mushnikov, V. S. Gaviko, and T. Goto, “Magnetic properties of hydrogen-amorphized RCo2Hx (R = Gd, Tb, Dy, Ho, Er, Tm and Y) alloys,” J. Alloys Compd. 398, 36–41 (2005). https://doi.org/10.1016/j.jallcom.2005.02.032

    Article  CAS  Google Scholar 

  23. E. Burzo, P. Vlaic, D. P. Kozlenko, S. E. Kichanov, N. T. Dang, E. V. Lukin, and B. N. Savenko, “Magnetic properties of TbCo2 compound at high pressures,” J. Alloys Compd. 551, 702–710 (2013). https://doi.org/10.1016/j.jallcom.2012.10.178

    Article  CAS  Google Scholar 

  24. M. Brouha and K. H. J. Buschow, “The pressure dependence of the Curie temperature of rare earth-cobalt compounds,” J. Phys. F: Met. Phys. 3, 2218–2226 (1973). https://doi.org/10.1088/0305-4608/3/12/021

    Article  CAS  Google Scholar 

  25. S. A. Nikitin, I. A. Tskhadadze, A. V. Morozkin, and Yu. D. Seropegin, “The influence of Ti on the itinerant magnetism of RTX compounds,” J. Magn. Magn. Mater. 196197, 632–633 (1999). https://doi.org/10.1016/s0304-8853(98)00880-4

    Article  Google Scholar 

  26. S. A. Nikitin, I. A. Ovchenkova, M. E. Blinova, and I. S. Tereshina, “Magnetocaloric effect in GdMn1 – xTxSi (T = Ti, Fe, Co) compounds,” Moscow Univ. Phys. Bull. 77 (4), 645–651 (2022). https://doi.org/10.3103/S0027134922040117

    Article  Google Scholar 

  27. I. S. Tereshina, S. V. Veselova, V. N. Verbetsky, M. A. Paukov, D. I. Gorbunov, and E. A. Tereshina-Chitrova, “Influence of substitutions and hydrogenation on the structural and magnetic properties of (R'R'')2Fe17 (R', R'' = Sm, Er, Ho): Compositions with promising fundamental characteristics,” J. Alloys Compd. 897, 163228 (2022). https://doi.org/10.1016/j.jallcom.2021.163228

    Article  CAS  Google Scholar 

  28. D. Givord and R. Lemaire, “Magnetic transition and anomalous thermal expansion in R2Fe17 compounds,” IEEE Trans. Magn. 10, 109–113 (1974). https://doi.org/10.1109/tmag.1974.1058311

    Article  CAS  Google Scholar 

  29. N. Yu. Pankratov, I. S. Tereshina, A. Yu. Karpenkov, and S. A. Nikitin, “Sign-reversing magnetocaloric effect in R2Fe10Al7 (R = Dy and Ho) compounds,” Crystallogr. Rep. 68, 441–445 (2023). https://doi.org/10.1134/s1063774523700141

    Article  CAS  Google Scholar 

  30. K. H. J. Buschow, “Intermetallic compounds of rare-earth and 3d transition metals,” Rep. Prog. Phys. 40, 1179–1256 (1977). https://doi.org/10.1088/0034-4885/40/10/002

    Article  CAS  Google Scholar 

  31. V. B. Chzhan, I. S. Tereshina, A. Yu. Karpenkov, and E. A. Tereshina-Chitrova, “Persistent values of magnetocaloric effect in the multicomponent Laves phase compounds with varied composition,” Acta Mater. 154, 303–310 (2018). https://doi.org/10.1016/j.actamat.2018.05.053

    Article  CAS  Google Scholar 

  32. N. A. de Oliveira and P. J. von Ranke, “Theoretical aspects of the magnetocaloric effect,” Phys. Rep. 489, 89–159 (2010). https://doi.org/10.1016/j.physrep.2009.12.006

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 22-29-00773, https://rscf.ru/project/22-29-00773/), Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Pankratov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Chernokozhin

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pankratov, N.Y., Tereshina, I.S. & Nikitin, S.A. Magnetocaloric Effect in Rare-Earth Magnets. Phys. Metals Metallogr. 124, 1139–1146 (2023). https://doi.org/10.1134/S0031918X23601841

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X23601841

Keywords:

Navigation