Log in

Thermal Conductivity and Thermal Diffusivity of Iron in the Temperature Range of 300–1700 K

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The laser flash method was used to measure the thermal diffusivity (a) of carbonyl iron in the temperature range of 300–1700 K with a detailed study of the critical region of 980–1170 K. The initial experimental data in the field of the magnetic phase transformation are processed by the scaling power law. The values of the critical indexes (γ′, γ) for the thermal diffusivity are obtained below and above the Curie temperature TС = 1048 ± 5 K; these values are \(\gamma {\kern 1pt} '\) = 0.51 and γ = 0.35, which significantly exceed in magnitude the value of the characteristic critical index for the heat capacity (γ ≈ –0.1). The thermal conductivity (λ) is calculated from the measured data on the thermal diffusivity. The results are compared with the known literature data, and special attention is paid to the behavior of the curves a(T) and λ(T) in the region of the magnetic phase transformation. A table of the recommended temperature dependences for a and λ along with estimated errors has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

REFERENCES

  1. E. A. S. Lewis, “Heat capacity of gadolinium near the Curie point,” Phys. Rev. B 1, 4368–4377 (1970). https://doi.org/10.1103/physrevb.1.4368

    Article  ADS  Google Scholar 

  2. D. L. Connelly, J. S. Loomis, and D. E. Mapother, “Specific heat of nickel near the Curie temperature,” Phys. Rev. B 3, 924–934 (1971). https://doi.org/10.1103/physrevb.3.924

    Article  ADS  Google Scholar 

  3. T. G. Kollie, “Measurement of the thermal-expansion coefficient of nickel from 300 to 1000 K and determination of the power-law constants near the Curie temperature,” Phys. Rev. B 16, 4872–4881 (1977). https://doi.org/10.1103/physrevb.16.4872

    Article  ADS  CAS  Google Scholar 

  4. Yu. M. Kozlovskii and S. V. Stankus, “The linear thermal expansion coefficient of iron in the temperature range of 130–1180 K,” J. Phys.: Conf. Ser. 1382, 012181 (2019). https://doi.org/10.1088/1742-6596/1382/1/012181

    Article  CAS  Google Scholar 

  5. M. D. Lanchbury and N. H. Saunders, “Critical behaviour in the transport properties of pure iron,” J. Phys. F: Met. Phys. 6, 1967–1977 (1976). https://doi.org/10.1088/0305-4608/6/10/025

    Article  ADS  CAS  Google Scholar 

  6. H. R. Shanks, A. H. Klein, and G. C. Danielson, “Thermal properties of Armco iron,” J. Appl. Phys. 38, 2885–2892 (1967). https://doi.org/10.1063/1.1710018

    Article  ADS  CAS  Google Scholar 

  7. A. Sh. Agazhanov, D. A. Samoshkin, and Yu. M. Kozlovskii, “Critical indexes of the nickel thermal diffusivity,” J. Phys.: Conf. Ser. 1677, 012163 (2020). https://doi.org/10.1088/1742-6596/1677/1/012163

    Article  CAS  Google Scholar 

  8. H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1971).

    Google Scholar 

  9. A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1992).

    Google Scholar 

  10. Sh.-K. Ma, Modern Theory of Critical Phenomena (W.A. Benjamin, Reading, Mass., 1976).

    Google Scholar 

  11. L. D. Landau and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1976).

    Google Scholar 

  12. Yu. Rumer and M. Ryvkin, Thermodynamics, Statistical Physics, and Kinetics (Nauka, Moscow, 1977).

    Google Scholar 

  13. V. E. Zinov’ev, Thermophysical Properties of Metals at High Temperatures (Metallurgiya, Moscow, 1989).

    Google Scholar 

  14. V. E. Zinov’ev, Sh. Sh. Abel’skii, M. I. Sandakova, E. G. Dik, L. N. Petrova, and P. V. Gel’d, “Thermal properties of iron and silicon solid solutions in it near the Curie point,” Zh. Eksp. Teor. Fiz. 66, 354–359 (1974).

    Google Scholar 

  15. V. E. Zinov’ev, R. P. Krentsis, and P. V. Gel’d, “Thermal diffusivity and thermal conductivity at high temperatures,” Fiz. Met. Metallogr. 26, 743–745 (1968).

    Google Scholar 

  16. M. J. Laubitz, “Thermal and electrical properties of Armco iron at high temperatures,” Can. J. Phys. 38, 887–907 (1960). https://doi.org/10.1139/p60-098

    Article  ADS  CAS  Google Scholar 

  17. F. Richter and R. Kohlhaas, “Wärmeleitfähigkeit des reinen Eisens zwischen –180 und 1000°C unter besonderer Berücksichtigung von Phasenumwandlungen,” Arch. Eisenhüttenwesen 36, 827–833 (1965). https://doi.org/10.1002/srin.196504155

    Article  CAS  Google Scholar 

  18. G. Busch and E. Steigmeier, “Wärmeleitfahigkeit, elektrische Leitfähigkeit, Hall-Effekt und Thermospannung von InSb,” Helv. Phys. Acta 34, 1–28 (1961).

    CAS  Google Scholar 

  19. B. E. Neimark, L. K. Voronin, and A. I. Merkul’ev, Thermal Conductivity of Technical Iron (Nauka, Moscow, 1971).

    Google Scholar 

  20. W. Fulkerson, J. P. Moore, and D. L. McElroy, “Comparison of the thermal conductivity, electrical resistivity, and Seebeck coefficient of a high-purity iron and an Armco iron to 1000°C,” J. Appl. Phys. 37, 2639–2653 (1966). https://doi.org/10.1063/1.1782098

    Article  ADS  CAS  Google Scholar 

  21. E. B. Zaretskii and V. E. Peletskii, “A device for coordinated study of thermophysical properties of metals and alloys,” High Temp. 17 (1), 104–111 (1979).

    Google Scholar 

  22. R. W. Powell and R. P. Tye, “New measurements on thermal conductivity reference materials,” Int. J. Heat Mass Transfer 10, 581–596 (1967). https://doi.org/10.1016/0017-9310(67)90106-8

    Article  CAS  Google Scholar 

  23. A. M. Banaev and V. Ya. Chekhovskii, “Experimental determination of thermal conductivity coefficients of solid substances in the temperature range 200–1000°C,” Teplofiz. Vys. Temp. 3 (1), 57–63 (1965).

    CAS  Google Scholar 

  24. C. Y. Ho, R. W. Powell, and P. E. Liley, “Thermal conductivity of the elements,” J. Phys. Chem. Ref. Data 1, 279–421 (1974). https://doi.org/10.1063/1.3253100

    Article  ADS  Google Scholar 

  25. V. E. Zinov’ev and I. G. Korshunov, Thermal Conductivity and Thermal Diffusivity of Transition Metals at High Temperatures, Part 1: Reviews on Thermophysical Properties of Substances (IVTAN, Moscow, 1978).

  26. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, “Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity,” J. Appl. Phys. 32, 1679–1684 (1961). https://doi.org/10.1063/1.1728417

    Article  ADS  CAS  Google Scholar 

  27. S. V. Stankus and I. V. Savchenko, “Laser flash method for measurement of liquid metals heat transfer coefficients,” Thermophys. Aeromech. 16, 585–592 (2009). https://doi.org/10.1134/s0869864309040076

    Article  ADS  Google Scholar 

  28. L. M. Clark III and R. E. Taylor, “Radiation loss in the flash method for thermal diffusivity,” J. Appl. Phys. 46, 714–719 (1975). https://doi.org/10.1063/1.321635

    Article  ADS  Google Scholar 

  29. J. A. Cape and G. W. Lehman, “Temperature and finite pulse-time effects in the flash method for measuring thermal diffusivity,” J. Appl. Phys. 34, 1909–1913 (1963). https://doi.org/10.1063/1.1729711

    Article  ADS  Google Scholar 

  30. J. Blumm and J. Opfermann, “Improvement of the mathematical modeling of flash measurements,” High Temp.s High Pressures 34, 515–521 (2002). https://doi.org/10.1068/htjr061

  31. V. E. Peletskii, V. Ya. Chekhovskoi, L. N. Latyev, and et al, Thermophysical Properties of Molybdenum and Its Alloys: Reference Book, Ed. by A. E. Sheindlin (Metallurgiya, Moscow, 1990).

    Google Scholar 

  32. V. I. Gorbatov, V. F. Polev, I. G. Korshunov, and S. G. Taluts, “Thermal diffusivity of iron at high temperatures,” High Temp. 50, 292–294 (2012). https://doi.org/10.1134/s0018151x12020071

    Article  CAS  Google Scholar 

  33. R. N. Abdullaev, R. A. Khairulin, and S. V. Stankus, “Volumetric properties of iron in the solid and liquid states,” J. Phys.: Conf. Ser. 1675, 012087 (2020). https://doi.org/10.1088/1742-6596/1675/1/012087

    Article  CAS  Google Scholar 

  34. R. Hultgren, R. D. Desai, D. T. Hawkins, et al., Selected Values of Thermodynamic Properties of Elements (Am. Soc. Metals, Ohio, 1973).

    Google Scholar 

Download references

Funding

This study was performed within the framework of the State Task, project no. 121031800219-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sh. Agazhanov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by A. Seferov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agazhanov, A.S., Samoshkin, D.A. & Stankus, S.V. Thermal Conductivity and Thermal Diffusivity of Iron in the Temperature Range of 300–1700 K. Phys. Metals Metallogr. 124, 1189–1197 (2023). https://doi.org/10.1134/S0031918X2360183X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X2360183X

Keywords:

Navigation