Log in

A Study of Phase Transition in an Array of Ferromagnetic Nanoparticles with the Dipole–Dipole Interaction Using Computer Simulation

  • ELECTRICAL AND MAGNETIC PROPERTIES
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The ordering of a two-dimensional array of ferromagnetic particles with a dipole–dipole interaction has been studied by computer simulation. The Ising model and Wolff cluster algorithm have been used for computer simulation. Single-domain particles have been considered. The dipole–dipole interaction leads to antiferromagnetic ordering of the magnetizations of particles. The dependence of the temperature of antiferromagnetic ordering on the intensity of the dipole–dipole interaction has been calculated. It has been shown that this dependence obeys a logarithmic law. The behavior of the system in an external magnetic field has been studied. There is a critical value of magnetic-field intensity for an array of ferromagnetic particles that suppresses the antiferromagnetic order similar to that for continuous systems. It has been shown that the dependence of the critical magnetic-field strength on the intensity of the dipole–dipole interaction is linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Ehrmann and T. Blachowicz, “Systematic study of magnetization reversal in square Fe nanodots of varying dimensions in different orientations,” Hyperfine Interact. 239, 48 (2018).

  2. S. A. Claridge, Jr. A. W. Castleman, S. N. Khanna, et al., “Cluster-assembled materials,” ACS Nano 3 (2), 244–255 (2009).

    Article  CAS  Google Scholar 

  3. Y. Guo, Q. Du, P. Wang, et al., “Two-dimensional oxides assembled by M4 clusters (M = B, Al, Ga, In, Cr, Mo, and Te),” Phys. Rev. Res. 3, 043231 (2021).

  4. D. Bista, T. Sengupta, A. C. Reber, and S. N. Khanna, “Interfacial magnetism in a fused superatomic cluster [Co6Se8(PEt3)5]2,” Nanoscale 13, 15763–15769 (2021).

    Article  CAS  Google Scholar 

  5. S. T. Bramwell and M. J. Gingras, “Spin ice state in frustrated magnetic pyrochlore materials,” Science 294, 1495–1501 (2001).

    Article  CAS  Google Scholar 

  6. C. Castelnovo, R. Moessner, and S. L. Sondhi, “Magnetic monopoles in spin ice,” Nature 451, 42–45 (2008).

    Article  CAS  Google Scholar 

  7. G. Yumnam, J. Guo, Y. Chen, et al., “Magnetic charge and geometry confluence for ultra-low forward voltage diode in artificial honeycomb lattice,” Mater. Today Phys. 22, 100574 (2022).

  8. N. Keswani, R. Singh, Y. Nakajima, et al., “Accessing low-energy magnetic microstates in square artificial spin ice vertices of broken symmetry in static magnetic field,” Phys. Rev. B 102, 224436 (2020).

  9. D. Gallina and G. M. Pastor, “Structural disorder and collective behavior of two-dimensional magnetic nanostructures,” Nanomaterials 11, 1392 (2021).

  10. D. Ming, L. Xu, D. Liu, et al., “Fabrication and phase transition of long-range-ordered, high-density GST nanoparticle arrays,” Nanotechnology 19, 505304 (2008).

  11. E. Gu, S. Hope, M. Tselepi, et al., “Two-dimensional paramagnetic-ferromagnetic phase transition and magnetic anisotropy in Co(110) epitaxial nanoparticle arrays,” Phys. Rev. B 60, 4092–4095 (1999).

    Article  CAS  Google Scholar 

  12. M. J. Benitez, D. Mishra, P. Szary, et al., “Structural and magnetic characterization of self-assembled iron oxide nanoparticle arrays,” J. Phys.: Condens. Matter 23, 126003 (2011).

  13. M. Spasova, U. Wiedwald, R. Ramchal, et al., “Magnetic properties of arrays of interacting Co nanocrystals,” J. Magn. Magn. Mater. 240, 40–43 (2002).

    Article  CAS  Google Scholar 

  14. A. F. Schäffer, A. Sukhova, and J. Berakdar, “Size-dependent frequency bands in the ferromagnetic resonance of a Fe-nanocube,” J. Magn. Magn. Mater. 438, 70–75 (2017).

    Article  Google Scholar 

  15. R. B. Morgunov, O. V. Koplak, R. S. Allayarov, et al., “Effect of the stray field of Fe/Fe3O4 nanoparticles on the surface of the CoFeB thin films,” Appl. Surf. Sci. 527, 146836 (2020).

  16. H. Ren and G. ** and point defects (VO and VSn) on the magnetic properties of SnO2,” J. Supercond. Nov. Magn. 32, 2877–2884 (2019).

    Article  CAS  Google Scholar 

  17. C. Zhang, M. Zhou, Y. Zhang, et al., “Effects of oxygen vacancy on the magnetic properties of Ni-doped SnO2 nanoparticles,” J Supercond. Nov. Magn. 32, 3509–3516 (2019).

    Article  CAS  Google Scholar 

  18. U. Wolff, “Collective Monte Carlo updating for spin systems,” Phys. Rev. Lett. 62, 361–364 (1988).

    Article  Google Scholar 

  19. K. Binder, “Critical properties from Monte Carlo coarse graining and renormalization,” Phys. Rev. Lett. 47, 693–696 (1981).

    Article  Google Scholar 

  20. D. P. Landau and K. Binder, “Phase diagrams and multicritical behavior of a three-dimensional anisotropic Heisenberg antiferromagnet,” Phys. Rev. B 17, 2328–2342 (1978).

    Article  Google Scholar 

  21. C. A. F. Vaz, J. A. C. Bland, and G. Lauhoff, “Magnetism in ultrathin film structures,” Rep. Prog. Phys. 71 (5), 056501 (2008).

  22. S. V. Belim, “Investigation of the effect of magnetic field on surface phase transition in antiferromagnetics by computer simulation,” J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 14 (6), 1183 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-07-00053.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Belim.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by N. Podymova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belim, S.V., Lyakh, O.V. A Study of Phase Transition in an Array of Ferromagnetic Nanoparticles with the Dipole–Dipole Interaction Using Computer Simulation. Phys. Metals Metallogr. 123, 1049–1053 (2022). https://doi.org/10.1134/S0031918X22601202

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X22601202

Keywords:

Navigation